1       SUBROUTINE ZGBT02( TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B,
  2      $                   LDB, RESID )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          TRANS
 10       INTEGER            KL, KU, LDA, LDB, LDX, M, N, NRHS
 11       DOUBLE PRECISION   RESID
 12 *     ..
 13 *     .. Array Arguments ..
 14       COMPLEX*16         A( LDA, * ), B( LDB, * ), X( LDX, * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  ZGBT02 computes the residual for a solution of a banded system of
 21 *  equations  A*x = b  or  A'*x = b:
 22 *     RESID = norm( B - A*X ) / ( norm(A) * norm(X) * EPS).
 23 *  where EPS is the machine precision.
 24 *
 25 *  Arguments
 26 *  =========
 27 *
 28 *  TRANS   (input) CHARACTER*1
 29 *          Specifies the form of the system of equations:
 30 *          = 'N':  A *x = b
 31 *          = 'T':  A'*x = b, where A' is the transpose of A
 32 *          = 'C':  A'*x = b, where A' is the transpose of A
 33 *
 34 *  M       (input) INTEGER
 35 *          The number of rows of the matrix A.  M >= 0.
 36 *
 37 *  N       (input) INTEGER
 38 *          The number of columns of the matrix A.  N >= 0.
 39 *
 40 *  KL      (input) INTEGER
 41 *          The number of subdiagonals within the band of A.  KL >= 0.
 42 *
 43 *  KU      (input) INTEGER
 44 *          The number of superdiagonals within the band of A.  KU >= 0.
 45 *
 46 *  NRHS    (input) INTEGER
 47 *          The number of columns of B.  NRHS >= 0.
 48 *
 49 *  A       (input) COMPLEX*16 array, dimension (LDA,N)
 50 *          The original matrix A in band storage, stored in rows 1 to
 51 *          KL+KU+1.
 52 *
 53 *  LDA     (input) INTEGER
 54 *          The leading dimension of the array A.  LDA >= max(1,KL+KU+1).
 55 *
 56 *  X       (input) COMPLEX*16 array, dimension (LDX,NRHS)
 57 *          The computed solution vectors for the system of linear
 58 *          equations.
 59 *
 60 *  LDX     (input) INTEGER
 61 *          The leading dimension of the array X.  If TRANS = 'N',
 62 *          LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M).
 63 *
 64 *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
 65 *          On entry, the right hand side vectors for the system of
 66 *          linear equations.
 67 *          On exit, B is overwritten with the difference B - A*X.
 68 *
 69 *  LDB     (input) INTEGER
 70 *          The leading dimension of the array B.  IF TRANS = 'N',
 71 *          LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N).
 72 *
 73 *  RESID   (output) DOUBLE PRECISION
 74 *          The maximum over the number of right hand sides of
 75 *          norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
 76 *
 77 *  =====================================================================
 78 *
 79 *     .. Parameters ..
 80       DOUBLE PRECISION   ZERO, ONE
 81       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 82       COMPLEX*16         CONE
 83       PARAMETER          ( CONE = ( 1.0D+00.0D+0 ) )
 84 *     ..
 85 *     .. Local Scalars ..
 86       INTEGER            I1, I2, J, KD, N1
 87       DOUBLE PRECISION   ANORM, BNORM, EPS, XNORM
 88 *     ..
 89 *     .. External Functions ..
 90       LOGICAL            LSAME
 91       DOUBLE PRECISION   DLAMCH, DZASUM
 92       EXTERNAL           LSAME, DLAMCH, DZASUM
 93 *     ..
 94 *     .. External Subroutines ..
 95       EXTERNAL           ZGBMV
 96 *     ..
 97 *     .. Intrinsic Functions ..
 98       INTRINSIC          MAXMIN
 99 *     ..
100 *     .. Executable Statements ..
101 *
102 *     Quick return if N = 0 pr NRHS = 0
103 *
104       IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.LE.0 ) THEN
105          RESID = ZERO
106          RETURN
107       END IF
108 *
109 *     Exit with RESID = 1/EPS if ANORM = 0.
110 *
111       EPS = DLAMCH( 'Epsilon' )
112       KD = KU + 1
113       ANORM = ZERO
114       DO 10 J = 1, N
115          I1 = MAX( KD+1-J, 1 )
116          I2 = MIN( KD+M-J, KL+KD )
117          ANORM = MAX( ANORM, DZASUM( I2-I1+1, A( I1, J ), 1 ) )
118    10 CONTINUE
119       IF( ANORM.LE.ZERO ) THEN
120          RESID = ONE / EPS
121          RETURN
122       END IF
123 *
124       IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN
125          N1 = N
126       ELSE
127          N1 = M
128       END IF
129 *
130 *     Compute  B - A*X (or  B - A'*X )
131 *
132       DO 20 J = 1, NRHS
133          CALL ZGBMV( TRANS, M, N, KL, KU, -CONE, A, LDA, X( 1, J ), 1,
134      $               CONE, B( 1, J ), 1 )
135    20 CONTINUE
136 *
137 *     Compute the maximum over the number of right hand sides of
138 *        norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
139 *
140       RESID = ZERO
141       DO 30 J = 1, NRHS
142          BNORM = DZASUM( N1, B( 1, J ), 1 )
143          XNORM = DZASUM( N1, X( 1, J ), 1 )
144          IF( XNORM.LE.ZERO ) THEN
145             RESID = ONE / EPS
146          ELSE
147             RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
148          END IF
149    30 CONTINUE
150 *
151       RETURN
152 *
153 *     End of ZGBT02
154 *
155       END