1       SUBROUTINE ZGET07( TRANS, N, NRHS, A, LDA, B, LDB, X, LDX, XACT,
  2      $                   LDXACT, FERR, CHKFERR, BERR, RESLTS )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          TRANS
 10       LOGICAL            CHKFERR
 11       INTEGER            LDA, LDB, LDX, LDXACT, N, NRHS
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   BERR( * ), FERR( * ), RESLTS( * )
 15       COMPLEX*16         A( LDA, * ), B( LDB, * ), X( LDX, * ),
 16      $                   XACT( LDXACT, * )
 17 *     ..
 18 *
 19 *  Purpose
 20 *  =======
 21 *
 22 *  ZGET07 tests the error bounds from iterative refinement for the
 23 *  computed solution to a system of equations op(A)*X = B, where A is a
 24 *  general n by n matrix and op(A) = A or A**T, depending on TRANS.
 25 *
 26 *  RESLTS(1) = test of the error bound
 27 *            = norm(X - XACT) / ( norm(X) * FERR )
 28 *
 29 *  A large value is returned if this ratio is not less than one.
 30 *
 31 *  RESLTS(2) = residual from the iterative refinement routine
 32 *            = the maximum of BERR / ( (n+1)*EPS + (*) ), where
 33 *              (*) = (n+1)*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
 34 *
 35 *  Arguments
 36 *  =========
 37 *
 38 *  TRANS   (input) CHARACTER*1
 39 *          Specifies the form of the system of equations.
 40 *          = 'N':  A * X = B     (No transpose)
 41 *          = 'T':  A**T * X = B  (Transpose)
 42 *          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
 43 *
 44 *  N       (input) INTEGER
 45 *          The number of rows of the matrices X and XACT.  N >= 0.
 46 *
 47 *  NRHS    (input) INTEGER
 48 *          The number of columns of the matrices X and XACT.  NRHS >= 0.
 49 *
 50 *  A       (input) COMPLEX*16 array, dimension (LDA,N)
 51 *          The original n by n matrix A.
 52 *
 53 *  LDA     (input) INTEGER
 54 *          The leading dimension of the array A.  LDA >= max(1,N).
 55 *
 56 *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
 57 *          The right hand side vectors for the system of linear
 58 *          equations.
 59 *
 60 *  LDB     (input) INTEGER
 61 *          The leading dimension of the array B.  LDB >= max(1,N).
 62 *
 63 *  X       (input) COMPLEX*16 array, dimension (LDX,NRHS)
 64 *          The computed solution vectors.  Each vector is stored as a
 65 *          column of the matrix X.
 66 *
 67 *  LDX     (input) INTEGER
 68 *          The leading dimension of the array X.  LDX >= max(1,N).
 69 *
 70 *  XACT    (input) COMPLEX*16 array, dimension (LDX,NRHS)
 71 *          The exact solution vectors.  Each vector is stored as a
 72 *          column of the matrix XACT.
 73 *
 74 *  LDXACT  (input) INTEGER
 75 *          The leading dimension of the array XACT.  LDXACT >= max(1,N).
 76 *
 77 *  FERR    (input) DOUBLE PRECISION array, dimension (NRHS)
 78 *          The estimated forward error bounds for each solution vector
 79 *          X.  If XTRUE is the true solution, FERR bounds the magnitude
 80 *          of the largest entry in (X - XTRUE) divided by the magnitude
 81 *          of the largest entry in X.
 82 *
 83 *  CHKFERR (input) LOGICAL
 84 *          Set to .TRUE. to check FERR, .FALSE. not to check FERR.
 85 *          When the test system is ill-conditioned, the "true"
 86 *          solution in XACT may be incorrect.
 87 *
 88 *  BERR    (input) DOUBLE PRECISION array, dimension (NRHS)
 89 *          The componentwise relative backward error of each solution
 90 *          vector (i.e., the smallest relative change in any entry of A
 91 *          or B that makes X an exact solution).
 92 *
 93 *  RESLTS  (output) DOUBLE PRECISION array, dimension (2)
 94 *          The maximum over the NRHS solution vectors of the ratios:
 95 *          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
 96 *          RESLTS(2) = BERR / ( (n+1)*EPS + (*) )
 97 *
 98 *  =====================================================================
 99 *
100 *     .. Parameters ..
101       DOUBLE PRECISION   ZERO, ONE
102       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
103 *     ..
104 *     .. Local Scalars ..
105       LOGICAL            NOTRAN
106       INTEGER            I, IMAX, J, K
107       DOUBLE PRECISION   AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
108       COMPLEX*16         ZDUM
109 *     ..
110 *     .. External Functions ..
111       LOGICAL            LSAME
112       INTEGER            IZAMAX
113       DOUBLE PRECISION   DLAMCH
114       EXTERNAL           LSAME, IZAMAX, DLAMCH
115 *     ..
116 *     .. Intrinsic Functions ..
117       INTRINSIC          ABSDBLEDIMAGMAXMIN
118 *     ..
119 *     .. Statement Functions ..
120       DOUBLE PRECISION   CABS1
121 *     ..
122 *     .. Statement Function definitions ..
123       CABS1( ZDUM ) = ABSDBLE( ZDUM ) ) + ABSDIMAG( ZDUM ) )
124 *     ..
125 *     .. Executable Statements ..
126 *
127 *     Quick exit if N = 0 or NRHS = 0.
128 *
129       IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
130          RESLTS( 1 ) = ZERO
131          RESLTS( 2 ) = ZERO
132          RETURN
133       END IF
134 *
135       EPS = DLAMCH( 'Epsilon' )
136       UNFL = DLAMCH( 'Safe minimum' )
137       OVFL = ONE / UNFL
138       NOTRAN = LSAME( TRANS, 'N' )
139 *
140 *     Test 1:  Compute the maximum of
141 *        norm(X - XACT) / ( norm(X) * FERR )
142 *     over all the vectors X and XACT using the infinity-norm.
143 *
144       ERRBND = ZERO
145       IF( CHKFERR ) THEN
146          DO 30 J = 1, NRHS
147             IMAX = IZAMAX( N, X( 1, J ), 1 )
148             XNORM = MAX( CABS1( X( IMAX, J ) ), UNFL )
149             DIFF = ZERO
150             DO 10 I = 1, N
151                DIFF = MAX( DIFF, CABS1( X( I, J )-XACT( I, J ) ) )
152  10         CONTINUE
153 *
154             IF( XNORM.GT.ONE ) THEN
155                GO TO 20
156             ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
157                GO TO 20
158             ELSE
159                ERRBND = ONE / EPS
160                GO TO 30
161             END IF
162 *
163  20         CONTINUE
164             IF( DIFF / XNORM.LE.FERR( J ) ) THEN
165                ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
166             ELSE
167                ERRBND = ONE / EPS
168             END IF
169  30      CONTINUE
170       END IF
171       RESLTS( 1 ) = ERRBND
172 *
173 *     Test 2:  Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where
174 *     (*) = (n+1)*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
175 *
176       DO 70 K = 1, NRHS
177          DO 60 I = 1, N
178             TMP = CABS1( B( I, K ) )
179             IF( NOTRAN ) THEN
180                DO 40 J = 1, N
181                   TMP = TMP + CABS1( A( I, J ) )*CABS1( X( J, K ) )
182    40          CONTINUE
183             ELSE
184                DO 50 J = 1, N
185                   TMP = TMP + CABS1( A( J, I ) )*CABS1( X( J, K ) )
186    50          CONTINUE
187             END IF
188             IF( I.EQ.1 ) THEN
189                AXBI = TMP
190             ELSE
191                AXBI = MIN( AXBI, TMP )
192             END IF
193    60    CONTINUE
194          TMP = BERR( K ) / ( ( N+1 )*EPS+( N+1 )*UNFL /
195      $         MAX( AXBI, ( N+1 )*UNFL ) )
196          IF( K.EQ.1 ) THEN
197             RESLTS( 2 ) = TMP
198          ELSE
199             RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
200          END IF
201    70 CONTINUE
202 *
203       RETURN
204 *
205 *     End of ZGET07
206 *
207       END