1       SUBROUTINE ZPOT03( UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK,
  2      $                   RWORK, RCOND, RESID )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            LDA, LDAINV, LDWORK, N
 11       DOUBLE PRECISION   RCOND, RESID
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   RWORK( * )
 15       COMPLEX*16         A( LDA, * ), AINV( LDAINV, * ),
 16      $                   WORK( LDWORK, * )
 17 *     ..
 18 *
 19 *  Purpose
 20 *  =======
 21 *
 22 *  ZPOT03 computes the residual for a Hermitian matrix times its
 23 *  inverse:
 24 *     norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
 25 *  where EPS is the machine epsilon.
 26 *
 27 *  Arguments
 28 *  ==========
 29 *
 30 *  UPLO    (input) CHARACTER*1
 31 *          Specifies whether the upper or lower triangular part of the
 32 *          Hermitian matrix A is stored:
 33 *          = 'U':  Upper triangular
 34 *          = 'L':  Lower triangular
 35 *
 36 *  N       (input) INTEGER
 37 *          The number of rows and columns of the matrix A.  N >= 0.
 38 *
 39 *  A       (input) COMPLEX*16 array, dimension (LDA,N)
 40 *          The original Hermitian matrix A.
 41 *
 42 *  LDA     (input) INTEGER
 43 *          The leading dimension of the array A.  LDA >= max(1,N)
 44 *
 45 *  AINV    (input/output) COMPLEX*16 array, dimension (LDAINV,N)
 46 *          On entry, the inverse of the matrix A, stored as a Hermitian
 47 *          matrix in the same format as A.
 48 *          In this version, AINV is expanded into a full matrix and
 49 *          multiplied by A, so the opposing triangle of AINV will be
 50 *          changed; i.e., if the upper triangular part of AINV is
 51 *          stored, the lower triangular part will be used as work space.
 52 *
 53 *  LDAINV  (input) INTEGER
 54 *          The leading dimension of the array AINV.  LDAINV >= max(1,N).
 55 *
 56 *  WORK    (workspace) COMPLEX*16 array, dimension (LDWORK,N)
 57 *
 58 *  LDWORK  (input) INTEGER
 59 *          The leading dimension of the array WORK.  LDWORK >= max(1,N).
 60 *
 61 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
 62 *
 63 *  RCOND   (output) DOUBLE PRECISION
 64 *          The reciprocal of the condition number of A, computed as
 65 *          ( 1/norm(A) ) / norm(AINV).
 66 *
 67 *  RESID   (output) DOUBLE PRECISION
 68 *          norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
 69 *
 70 *  =====================================================================
 71 *
 72 *     .. Parameters ..
 73       DOUBLE PRECISION   ZERO, ONE
 74       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 75       COMPLEX*16         CZERO, CONE
 76       PARAMETER          ( CZERO = ( 0.0D+00.0D+0 ),
 77      $                   CONE = ( 1.0D+00.0D+0 ) )
 78 *     ..
 79 *     .. Local Scalars ..
 80       INTEGER            I, J
 81       DOUBLE PRECISION   AINVNM, ANORM, EPS
 82 *     ..
 83 *     .. External Functions ..
 84       LOGICAL            LSAME
 85       DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANHE
 86       EXTERNAL           LSAME, DLAMCH, ZLANGE, ZLANHE
 87 *     ..
 88 *     .. External Subroutines ..
 89       EXTERNAL           ZHEMM
 90 *     ..
 91 *     .. Intrinsic Functions ..
 92       INTRINSIC          DBLEDCONJG
 93 *     ..
 94 *     .. Executable Statements ..
 95 *
 96 *     Quick exit if N = 0.
 97 *
 98       IF( N.LE.0 ) THEN
 99          RCOND = ONE
100          RESID = ZERO
101          RETURN
102       END IF
103 *
104 *     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
105 *
106       EPS = DLAMCH( 'Epsilon' )
107       ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
108       AINVNM = ZLANHE( '1', UPLO, N, AINV, LDAINV, RWORK )
109       IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
110          RCOND = ZERO
111          RESID = ONE / EPS
112          RETURN
113       END IF
114       RCOND = ( ONE / ANORM ) / AINVNM
115 *
116 *     Expand AINV into a full matrix and call ZHEMM to multiply
117 *     AINV on the left by A.
118 *
119       IF( LSAME( UPLO, 'U' ) ) THEN
120          DO 20 J = 1, N
121             DO 10 I = 1, J - 1
122                AINV( J, I ) = DCONJG( AINV( I, J ) )
123    10       CONTINUE
124    20    CONTINUE
125       ELSE
126          DO 40 J = 1, N
127             DO 30 I = J + 1, N
128                AINV( J, I ) = DCONJG( AINV( I, J ) )
129    30       CONTINUE
130    40    CONTINUE
131       END IF
132       CALL ZHEMM( 'Left', UPLO, N, N, -CONE, A, LDA, AINV, LDAINV,
133      $            CZERO, WORK, LDWORK )
134 *
135 *     Add the identity matrix to WORK .
136 *
137       DO 50 I = 1, N
138          WORK( I, I ) = WORK( I, I ) + CONE
139    50 CONTINUE
140 *
141 *     Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
142 *
143       RESID = ZLANGE( '1', N, N, WORK, LDWORK, RWORK )
144 *
145       RESID = ( ( RESID*RCOND ) / EPS ) / DBLE( N )
146 *
147       RETURN
148 *
149 *     End of ZPOT03
150 *
151       END