1       SUBROUTINE ZPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
  2      $                   RESID )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            LDWORK, N
 11       DOUBLE PRECISION   RCOND, RESID
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   RWORK( * )
 15       COMPLEX*16         A( * ), AINV( * ), WORK( LDWORK, * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  ZPPT03 computes the residual for a Hermitian packed matrix times its
 22 *  inverse:
 23 *     norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
 24 *  where EPS is the machine epsilon.
 25 *
 26 *  Arguments
 27 *  ==========
 28 *
 29 *  UPLO    (input) CHARACTER*1
 30 *          Specifies whether the upper or lower triangular part of the
 31 *          Hermitian matrix A is stored:
 32 *          = 'U':  Upper triangular
 33 *          = 'L':  Lower triangular
 34 *
 35 *  N       (input) INTEGER
 36 *          The number of rows and columns of the matrix A.  N >= 0.
 37 *
 38 *  A       (input) COMPLEX*16 array, dimension (N*(N+1)/2)
 39 *          The original Hermitian matrix A, stored as a packed
 40 *          triangular matrix.
 41 *
 42 *  AINV    (input) COMPLEX*16 array, dimension (N*(N+1)/2)
 43 *          The (Hermitian) inverse of the matrix A, stored as a packed
 44 *          triangular matrix.
 45 *
 46 *  WORK    (workspace) COMPLEX*16 array, dimension (LDWORK,N)
 47 *
 48 *  LDWORK  (input) INTEGER
 49 *          The leading dimension of the array WORK.  LDWORK >= max(1,N).
 50 *
 51 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
 52 *
 53 *  RCOND   (output) DOUBLE PRECISION
 54 *          The reciprocal of the condition number of A, computed as
 55 *          ( 1/norm(A) ) / norm(AINV).
 56 *
 57 *  RESID   (output) DOUBLE PRECISION
 58 *          norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
 59 *
 60 *  =====================================================================
 61 *
 62 *     .. Parameters ..
 63       DOUBLE PRECISION   ZERO, ONE
 64       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 65       COMPLEX*16         CZERO, CONE
 66       PARAMETER          ( CZERO = ( 0.0D+00.0D+0 ),
 67      $                   CONE = ( 1.0D+00.0D+0 ) )
 68 *     ..
 69 *     .. Local Scalars ..
 70       INTEGER            I, J, JJ
 71       DOUBLE PRECISION   AINVNM, ANORM, EPS
 72 *     ..
 73 *     .. External Functions ..
 74       LOGICAL            LSAME
 75       DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANHP
 76       EXTERNAL           LSAME, DLAMCH, ZLANGE, ZLANHP
 77 *     ..
 78 *     .. Intrinsic Functions ..
 79       INTRINSIC          DBLEDCONJG
 80 *     ..
 81 *     .. External Subroutines ..
 82       EXTERNAL           ZCOPY, ZHPMV
 83 *     ..
 84 *     .. Executable Statements ..
 85 *
 86 *     Quick exit if N = 0.
 87 *
 88       IF( N.LE.0 ) THEN
 89          RCOND = ONE
 90          RESID = ZERO
 91          RETURN
 92       END IF
 93 *
 94 *     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
 95 *
 96       EPS = DLAMCH( 'Epsilon' )
 97       ANORM = ZLANHP( '1', UPLO, N, A, RWORK )
 98       AINVNM = ZLANHP( '1', UPLO, N, AINV, RWORK )
 99       IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
100          RCOND = ZERO
101          RESID = ONE / EPS
102          RETURN
103       END IF
104       RCOND = ( ONE / ANORM ) / AINVNM
105 *
106 *     UPLO = 'U':
107 *     Copy the leading N-1 x N-1 submatrix of AINV to WORK(1:N,2:N) and
108 *     expand it to a full matrix, then multiply by A one column at a
109 *     time, moving the result one column to the left.
110 *
111       IF( LSAME( UPLO, 'U' ) ) THEN
112 *
113 *        Copy AINV
114 *
115          JJ = 1
116          DO 20 J = 1, N - 1
117             CALL ZCOPY( J, AINV( JJ ), 1, WORK( 1, J+1 ), 1 )
118             DO 10 I = 1, J - 1
119                WORK( J, I+1 ) = DCONJG( AINV( JJ+I-1 ) )
120    10       CONTINUE
121             JJ = JJ + J
122    20    CONTINUE
123          JJ = ( ( N-1 )*N ) / 2 + 1
124          DO 30 I = 1, N - 1
125             WORK( N, I+1 ) = DCONJG( AINV( JJ+I-1 ) )
126    30    CONTINUE
127 *
128 *        Multiply by A
129 *
130          DO 40 J = 1, N - 1
131             CALL ZHPMV( 'Upper', N, -CONE, A, WORK( 1, J+1 ), 1, CZERO,
132      $                  WORK( 1, J ), 1 )
133    40    CONTINUE
134          CALL ZHPMV( 'Upper', N, -CONE, A, AINV( JJ ), 1, CZERO,
135      $               WORK( 1, N ), 1 )
136 *
137 *     UPLO = 'L':
138 *     Copy the trailing N-1 x N-1 submatrix of AINV to WORK(1:N,1:N-1)
139 *     and multiply by A, moving each column to the right.
140 *
141       ELSE
142 *
143 *        Copy AINV
144 *
145          DO 50 I = 1, N - 1
146             WORK( 1, I ) = DCONJG( AINV( I+1 ) )
147    50    CONTINUE
148          JJ = N + 1
149          DO 70 J = 2, N
150             CALL ZCOPY( N-J+1, AINV( JJ ), 1, WORK( J, J-1 ), 1 )
151             DO 60 I = 1, N - J
152                WORK( J, J+I-1 ) = DCONJG( AINV( JJ+I ) )
153    60       CONTINUE
154             JJ = JJ + N - J + 1
155    70    CONTINUE
156 *
157 *        Multiply by A
158 *
159          DO 80 J = N, 2-1
160             CALL ZHPMV( 'Lower', N, -CONE, A, WORK( 1, J-1 ), 1, CZERO,
161      $                  WORK( 1, J ), 1 )
162    80    CONTINUE
163          CALL ZHPMV( 'Lower', N, -CONE, A, AINV( 1 ), 1, CZERO,
164      $               WORK( 11 ), 1 )
165 *
166       END IF
167 *
168 *     Add the identity matrix to WORK .
169 *
170       DO 90 I = 1, N
171          WORK( I, I ) = WORK( I, I ) + CONE
172    90 CONTINUE
173 *
174 *     Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
175 *
176       RESID = ZLANGE( '1', N, N, WORK, LDWORK, RWORK )
177 *
178       RESID = ( ( RESID*RCOND ) / EPS ) / DBLE( N )
179 *
180       RETURN
181 *
182 *     End of ZPPT03
183 *
184       END