1       SUBROUTINE ZQRT01( M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK,
  2      $                   RWORK, RESULT )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            LDA, LWORK, M, N
 10 *     ..
 11 *     .. Array Arguments ..
 12       DOUBLE PRECISION   RESULT* ), RWORK( * )
 13       COMPLEX*16         A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
 14      $                   R( LDA, * ), TAU( * ), WORK( LWORK )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  ZQRT01 tests ZGEQRF, which computes the QR factorization of an m-by-n
 21 *  matrix A, and partially tests ZUNGQR which forms the m-by-m
 22 *  orthogonal matrix Q.
 23 *
 24 *  ZQRT01 compares R with Q'*A, and checks that Q is orthogonal.
 25 *
 26 *  Arguments
 27 *  =========
 28 *
 29 *  M       (input) INTEGER
 30 *          The number of rows of the matrix A.  M >= 0.
 31 *
 32 *  N       (input) INTEGER
 33 *          The number of columns of the matrix A.  N >= 0.
 34 *
 35 *  A       (input) COMPLEX*16 array, dimension (LDA,N)
 36 *          The m-by-n matrix A.
 37 *
 38 *  AF      (output) COMPLEX*16 array, dimension (LDA,N)
 39 *          Details of the QR factorization of A, as returned by ZGEQRF.
 40 *          See ZGEQRF for further details.
 41 *
 42 *  Q       (output) COMPLEX*16 array, dimension (LDA,M)
 43 *          The m-by-m orthogonal matrix Q.
 44 *
 45 *  R       (workspace) COMPLEX*16 array, dimension (LDA,max(M,N))
 46 *
 47 *  LDA     (input) INTEGER
 48 *          The leading dimension of the arrays A, AF, Q and R.
 49 *          LDA >= max(M,N).
 50 *
 51 *  TAU     (output) COMPLEX*16 array, dimension (min(M,N))
 52 *          The scalar factors of the elementary reflectors, as returned
 53 *          by ZGEQRF.
 54 *
 55 *  WORK    (workspace) COMPLEX*16 array, dimension (LWORK)
 56 *
 57 *  LWORK   (input) INTEGER
 58 *          The dimension of the array WORK.
 59 *
 60 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (M)
 61 *
 62 *  RESULT  (output) DOUBLE PRECISION array, dimension (2)
 63 *          The test ratios:
 64 *          RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS )
 65 *          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
 66 *
 67 *  =====================================================================
 68 *
 69 *     .. Parameters ..
 70       DOUBLE PRECISION   ZERO, ONE
 71       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 72       COMPLEX*16         ROGUE
 73       PARAMETER          ( ROGUE = ( -1.0D+10-1.0D+10 ) )
 74 *     ..
 75 *     .. Local Scalars ..
 76       INTEGER            INFO, MINMN
 77       DOUBLE PRECISION   ANORM, EPS, RESID
 78 *     ..
 79 *     .. External Functions ..
 80       DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANSY
 81       EXTERNAL           DLAMCH, ZLANGE, ZLANSY
 82 *     ..
 83 *     .. External Subroutines ..
 84       EXTERNAL           ZGEMM, ZGEQRF, ZHERK, ZLACPY, ZLASET, ZUNGQR
 85 *     ..
 86 *     .. Intrinsic Functions ..
 87       INTRINSIC          DBLEDCMPLXMAXMIN
 88 *     ..
 89 *     .. Scalars in Common ..
 90       CHARACTER*32       SRNAMT
 91 *     ..
 92 *     .. Common blocks ..
 93       COMMON             / SRNAMC / SRNAMT
 94 *     ..
 95 *     .. Executable Statements ..
 96 *
 97       MINMN = MIN( M, N )
 98       EPS = DLAMCH( 'Epsilon' )
 99 *
100 *     Copy the matrix A to the array AF.
101 *
102       CALL ZLACPY( 'Full', M, N, A, LDA, AF, LDA )
103 *
104 *     Factorize the matrix A in the array AF.
105 *
106       SRNAMT = 'ZGEQRF'
107       CALL ZGEQRF( M, N, AF, LDA, TAU, WORK, LWORK, INFO )
108 *
109 *     Copy details of Q
110 *
111       CALL ZLASET( 'Full', M, M, ROGUE, ROGUE, Q, LDA )
112       CALL ZLACPY( 'Lower', M-1, N, AF( 21 ), LDA, Q( 21 ), LDA )
113 *
114 *     Generate the m-by-m matrix Q
115 *
116       SRNAMT = 'ZUNGQR'
117       CALL ZUNGQR( M, M, MINMN, Q, LDA, TAU, WORK, LWORK, INFO )
118 *
119 *     Copy R
120 *
121       CALL ZLASET( 'Full', M, N, DCMPLX( ZERO ), DCMPLX( ZERO ), R,
122      $             LDA )
123       CALL ZLACPY( 'Upper', M, N, AF, LDA, R, LDA )
124 *
125 *     Compute R - Q'*A
126 *
127       CALL ZGEMM( 'Conjugate transpose''No transpose', M, N, M,
128      $            DCMPLX-ONE ), Q, LDA, A, LDA, DCMPLX( ONE ), R,
129      $            LDA )
130 *
131 *     Compute norm( R - Q'*A ) / ( M * norm(A) * EPS ) .
132 *
133       ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
134       RESID = ZLANGE( '1', M, N, R, LDA, RWORK )
135       IF( ANORM.GT.ZERO ) THEN
136          RESULT1 ) = ( ( RESID / DBLEMAX1, M ) ) ) / ANORM ) / EPS
137       ELSE
138          RESULT1 ) = ZERO
139       END IF
140 *
141 *     Compute I - Q'*Q
142 *
143       CALL ZLASET( 'Full', M, M, DCMPLX( ZERO ), DCMPLX( ONE ), R, LDA )
144       CALL ZHERK( 'Upper''Conjugate transpose', M, M, -ONE, Q, LDA,
145      $            ONE, R, LDA )
146 *
147 *     Compute norm( I - Q'*Q ) / ( M * EPS ) .
148 *
149       RESID = ZLANSY( '1''Upper', M, R, LDA, RWORK )
150 *
151       RESULT2 ) = ( RESID / DBLEMAX1, M ) ) ) / EPS
152 *
153       RETURN
154 *
155 *     End of ZQRT01
156 *
157       END