1       SUBROUTINE ZQRT16( TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB,
  2      $                   RWORK, RESID )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          TRANS
 10       INTEGER            LDA, LDB, LDX, M, N, NRHS
 11       DOUBLE PRECISION   RESID
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   RWORK( * )
 15       COMPLEX*16         A( LDA, * ), B( LDB, * ), X( LDX, * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  ZQRT16 computes the residual for a solution of a system of linear
 22 *  equations  A*x = b  or  A'*x = b:
 23 *     RESID = norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ),
 24 *  where EPS is the machine epsilon.
 25 *
 26 *  Arguments
 27 *  =========
 28 *
 29 *  TRANS   (input) CHARACTER*1
 30 *          Specifies the form of the system of equations:
 31 *          = 'N':  A *x = b
 32 *          = 'T':  A^T*x = b, where A^T is the transpose of A
 33 *          = 'C':  A^H*x = b, where A^H is the conjugate transpose of A
 34 *
 35 *  M       (input) INTEGER
 36 *          The number of rows of the matrix A.  M >= 0.
 37 *
 38 *  N       (input) INTEGER
 39 *          The number of columns of the matrix A.  N >= 0.
 40 *
 41 *  NRHS    (input) INTEGER
 42 *          The number of columns of B, the matrix of right hand sides.
 43 *          NRHS >= 0.
 44 *
 45 *  A       (input) COMPLEX*16 array, dimension (LDA,N)
 46 *          The original M x N matrix A.
 47 *
 48 *  LDA     (input) INTEGER
 49 *          The leading dimension of the array A.  LDA >= max(1,M).
 50 *
 51 *  X       (input) COMPLEX*16 array, dimension (LDX,NRHS)
 52 *          The computed solution vectors for the system of linear
 53 *          equations.
 54 *
 55 *  LDX     (input) INTEGER
 56 *          The leading dimension of the array X.  If TRANS = 'N',
 57 *          LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M).
 58 *
 59 *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
 60 *          On entry, the right hand side vectors for the system of
 61 *          linear equations.
 62 *          On exit, B is overwritten with the difference B - A*X.
 63 *
 64 *  LDB     (input) INTEGER
 65 *          The leading dimension of the array B.  IF TRANS = 'N',
 66 *          LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N).
 67 *
 68 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (M)
 69 *
 70 *  RESID   (output) DOUBLE PRECISION
 71 *          The maximum over the number of right hand sides of
 72 *          norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ).
 73 *
 74 *  =====================================================================
 75 *
 76 *     .. Parameters ..
 77       DOUBLE PRECISION   ZERO, ONE
 78       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 79       COMPLEX*16         CONE
 80       PARAMETER          ( CONE = ( 1.0D+00.0D+0 ) )
 81 *     ..
 82 *     .. Local Scalars ..
 83       INTEGER            J, N1, N2
 84       DOUBLE PRECISION   ANORM, BNORM, EPS, XNORM
 85 *     ..
 86 *     .. External Functions ..
 87       LOGICAL            LSAME
 88       DOUBLE PRECISION   DLAMCH, DZASUM, ZLANGE
 89       EXTERNAL           LSAME, DLAMCH, DZASUM, ZLANGE
 90 *     ..
 91 *     .. External Subroutines ..
 92       EXTERNAL           ZGEMM
 93 *     ..
 94 *     .. Intrinsic Functions ..
 95       INTRINSIC          MAX
 96 *     ..
 97 *     .. Executable Statements ..
 98 *
 99 *     Quick exit if M = 0 or N = 0 or NRHS = 0
100 *
101       IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.EQ.0 ) THEN
102          RESID = ZERO
103          RETURN
104       END IF
105 *
106       IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN
107          ANORM = ZLANGE( 'I', M, N, A, LDA, RWORK )
108          N1 = N
109          N2 = M
110       ELSE
111          ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
112          N1 = M
113          N2 = N
114       END IF
115 *
116       EPS = DLAMCH( 'Epsilon' )
117 *
118 *     Compute  B - A*X  (or  B - A'*X ) and store in B.
119 *
120       CALL ZGEMM( TRANS, 'No transpose', N1, NRHS, N2, -CONE, A, LDA, X,
121      $            LDX, CONE, B, LDB )
122 *
123 *     Compute the maximum over the number of right hand sides of
124 *        norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ) .
125 *
126       RESID = ZERO
127       DO 10 J = 1, NRHS
128          BNORM = DZASUM( N1, B( 1, J ), 1 )
129          XNORM = DZASUM( N2, X( 1, J ), 1 )
130          IF( ANORM.EQ.ZERO .AND. BNORM.EQ.ZERO ) THEN
131             RESID = ZERO
132          ELSE IF( ANORM.LE.ZERO .OR. XNORM.LE.ZERO ) THEN
133             RESID = ONE / EPS
134          ELSE
135             RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) /
136      $              ( MAX( M, N )*EPS ) )
137          END IF
138    10 CONTINUE
139 *
140       RETURN
141 *
142 *     End of ZQRT16
143 *
144       END