1       SUBROUTINE ZTRT05( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X,
  2      $                   LDX, XACT, LDXACT, FERR, BERR, RESLTS )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          DIAG, TRANS, UPLO
 10       INTEGER            LDA, LDB, LDX, LDXACT, N, NRHS
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   BERR( * ), FERR( * ), RESLTS( * )
 14       COMPLEX*16         A( LDA, * ), B( LDB, * ), X( LDX, * ),
 15      $                   XACT( LDXACT, * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  ZTRT05 tests the error bounds from iterative refinement for the
 22 *  computed solution to a system of equations A*X = B, where A is a
 23 *  triangular n by n matrix.
 24 *
 25 *  RESLTS(1) = test of the error bound
 26 *            = norm(X - XACT) / ( norm(X) * FERR )
 27 *
 28 *  A large value is returned if this ratio is not less than one.
 29 *
 30 *  RESLTS(2) = residual from the iterative refinement routine
 31 *            = the maximum of BERR / ( (n+1)*EPS + (*) ), where
 32 *              (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
 33 *
 34 *  Arguments
 35 *  =========
 36 *
 37 *  UPLO    (input) CHARACTER*1
 38 *          Specifies whether the matrix A is upper or lower triangular.
 39 *          = 'U':  Upper triangular
 40 *          = 'L':  Lower triangular
 41 *
 42 *  TRANS   (input) CHARACTER*1
 43 *          Specifies the form of the system of equations.
 44 *          = 'N':  A * X = B  (No transpose)
 45 *          = 'T':  A'* X = B  (Transpose)
 46 *          = 'C':  A'* X = B  (Conjugate transpose = Transpose)
 47 *
 48 *  DIAG    (input) CHARACTER*1
 49 *          Specifies whether or not the matrix A is unit triangular.
 50 *          = 'N':  Non-unit triangular
 51 *          = 'U':  Unit triangular
 52 *
 53 *  N       (input) INTEGER
 54 *          The number of rows of the matrices X, B, and XACT, and the
 55 *          order of the matrix A.  N >= 0.
 56 *
 57 *  NRHS    (input) INTEGER
 58 *          The number of columns of the matrices X, B, and XACT.
 59 *          NRHS >= 0.
 60 *
 61 *  A       (input) COMPLEX*16 array, dimension (LDA,N)
 62 *          The triangular matrix A.  If UPLO = 'U', the leading n by n
 63 *          upper triangular part of the array A contains the upper
 64 *          triangular matrix, and the strictly lower triangular part of
 65 *          A is not referenced.  If UPLO = 'L', the leading n by n lower
 66 *          triangular part of the array A contains the lower triangular
 67 *          matrix, and the strictly upper triangular part of A is not
 68 *          referenced.  If DIAG = 'U', the diagonal elements of A are
 69 *          also not referenced and are assumed to be 1.
 70 *
 71 *  LDA     (input) INTEGER
 72 *          The leading dimension of the array A.  LDA >= max(1,N).
 73 *
 74 *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
 75 *          The right hand side vectors for the system of linear
 76 *          equations.
 77 *
 78 *  LDB     (input) INTEGER
 79 *          The leading dimension of the array B.  LDB >= max(1,N).
 80 *
 81 *  X       (input) COMPLEX*16 array, dimension (LDX,NRHS)
 82 *          The computed solution vectors.  Each vector is stored as a
 83 *          column of the matrix X.
 84 *
 85 *  LDX     (input) INTEGER
 86 *          The leading dimension of the array X.  LDX >= max(1,N).
 87 *
 88 *  XACT    (input) COMPLEX*16 array, dimension (LDX,NRHS)
 89 *          The exact solution vectors.  Each vector is stored as a
 90 *          column of the matrix XACT.
 91 *
 92 *  LDXACT  (input) INTEGER
 93 *          The leading dimension of the array XACT.  LDXACT >= max(1,N).
 94 *
 95 *  FERR    (input) DOUBLE PRECISION array, dimension (NRHS)
 96 *          The estimated forward error bounds for each solution vector
 97 *          X.  If XTRUE is the true solution, FERR bounds the magnitude
 98 *          of the largest entry in (X - XTRUE) divided by the magnitude
 99 *          of the largest entry in X.
100 *
101 *  BERR    (input) DOUBLE PRECISION array, dimension (NRHS)
102 *          The componentwise relative backward error of each solution
103 *          vector (i.e., the smallest relative change in any entry of A
104 *          or B that makes X an exact solution).
105 *
106 *  RESLTS  (output) DOUBLE PRECISION array, dimension (2)
107 *          The maximum over the NRHS solution vectors of the ratios:
108 *          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
109 *          RESLTS(2) = BERR / ( (n+1)*EPS + (*) )
110 *
111 *  =====================================================================
112 *
113 *     .. Parameters ..
114       DOUBLE PRECISION   ZERO, ONE
115       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
116 *     ..
117 *     .. Local Scalars ..
118       LOGICAL            NOTRAN, UNIT, UPPER
119       INTEGER            I, IFU, IMAX, J, K
120       DOUBLE PRECISION   AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
121       COMPLEX*16         ZDUM
122 *     ..
123 *     .. External Functions ..
124       LOGICAL            LSAME
125       INTEGER            IZAMAX
126       DOUBLE PRECISION   DLAMCH
127       EXTERNAL           LSAME, IZAMAX, DLAMCH
128 *     ..
129 *     .. Intrinsic Functions ..
130       INTRINSIC          ABSDBLEDIMAGMAXMIN
131 *     ..
132 *     .. Statement Functions ..
133       DOUBLE PRECISION   CABS1
134 *     ..
135 *     .. Statement Function definitions ..
136       CABS1( ZDUM ) = ABSDBLE( ZDUM ) ) + ABSDIMAG( ZDUM ) )
137 *     ..
138 *     .. Executable Statements ..
139 *
140 *     Quick exit if N = 0 or NRHS = 0.
141 *
142       IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
143          RESLTS( 1 ) = ZERO
144          RESLTS( 2 ) = ZERO
145          RETURN
146       END IF
147 *
148       EPS = DLAMCH( 'Epsilon' )
149       UNFL = DLAMCH( 'Safe minimum' )
150       OVFL = ONE / UNFL
151       UPPER = LSAME( UPLO, 'U' )
152       NOTRAN = LSAME( TRANS, 'N' )
153       UNIT = LSAME( DIAG, 'U' )
154 *
155 *     Test 1:  Compute the maximum of
156 *        norm(X - XACT) / ( norm(X) * FERR )
157 *     over all the vectors X and XACT using the infinity-norm.
158 *
159       ERRBND = ZERO
160       DO 30 J = 1, NRHS
161          IMAX = IZAMAX( N, X( 1, J ), 1 )
162          XNORM = MAX( CABS1( X( IMAX, J ) ), UNFL )
163          DIFF = ZERO
164          DO 10 I = 1, N
165             DIFF = MAX( DIFF, CABS1( X( I, J )-XACT( I, J ) ) )
166    10    CONTINUE
167 *
168          IF( XNORM.GT.ONE ) THEN
169             GO TO 20
170          ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
171             GO TO 20
172          ELSE
173             ERRBND = ONE / EPS
174             GO TO 30
175          END IF
176 *
177    20    CONTINUE
178          IF( DIFF / XNORM.LE.FERR( J ) ) THEN
179             ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
180          ELSE
181             ERRBND = ONE / EPS
182          END IF
183    30 CONTINUE
184       RESLTS( 1 ) = ERRBND
185 *
186 *     Test 2:  Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where
187 *     (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
188 *
189       IFU = 0
190       IFUNIT )
191      $   IFU = 1
192       DO 90 K = 1, NRHS
193          DO 80 I = 1, N
194             TMP = CABS1( B( I, K ) )
195             IF( UPPER ) THEN
196                IF.NOT.NOTRAN ) THEN
197                   DO 40 J = 1, I - IFU
198                      TMP = TMP + CABS1( A( J, I ) )*CABS1( X( J, K ) )
199    40             CONTINUE
200                   IFUNIT )
201      $               TMP = TMP + CABS1( X( I, K ) )
202                ELSE
203                   IFUNIT )
204      $               TMP = TMP + CABS1( X( I, K ) )
205                   DO 50 J = I + IFU, N
206                      TMP = TMP + CABS1( A( I, J ) )*CABS1( X( J, K ) )
207    50             CONTINUE
208                END IF
209             ELSE
210                IF( NOTRAN ) THEN
211                   DO 60 J = 1, I - IFU
212                      TMP = TMP + CABS1( A( I, J ) )*CABS1( X( J, K ) )
213    60             CONTINUE
214                   IFUNIT )
215      $               TMP = TMP + CABS1( X( I, K ) )
216                ELSE
217                   IFUNIT )
218      $               TMP = TMP + CABS1( X( I, K ) )
219                   DO 70 J = I + IFU, N
220                      TMP = TMP + CABS1( A( J, I ) )*CABS1( X( J, K ) )
221    70             CONTINUE
222                END IF
223             END IF
224             IF( I.EQ.1 ) THEN
225                AXBI = TMP
226             ELSE
227                AXBI = MIN( AXBI, TMP )
228             END IF
229    80    CONTINUE
230          TMP = BERR( K ) / ( ( N+1 )*EPS+( N+1 )*UNFL /
231      $         MAX( AXBI, ( N+1 )*UNFL ) )
232          IF( K.EQ.1 ) THEN
233             RESLTS( 2 ) = TMP
234          ELSE
235             RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
236          END IF
237    90 CONTINUE
238 *
239       RETURN
240 *
241 *     End of ZTRT05
242 *
243       END