1       SUBROUTINE CLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO )
  2 *
  3 *  -- LAPACK auxiliary test routine (version 3.1) --
  4 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  5 *     November 2006
  6 *
  7 *     .. Scalar Arguments ..
  8       INTEGER            INFO, KL, KU, LDA, M, N
  9 *     ..
 10 *     .. Array Arguments ..
 11       INTEGER            ISEED( 4 )
 12       REAL               D( * )
 13       COMPLEX            A( LDA, * ), WORK( * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  CLAGGE generates a complex general m by n matrix A, by pre- and post-
 20 *  multiplying a real diagonal matrix D with random unitary matrices:
 21 *  A = U*D*V. The lower and upper bandwidths may then be reduced to
 22 *  kl and ku by additional unitary transformations.
 23 *
 24 *  Arguments
 25 *  =========
 26 *
 27 *  M       (input) INTEGER
 28 *          The number of rows of the matrix A.  M >= 0.
 29 *
 30 *  N       (input) INTEGER
 31 *          The number of columns of the matrix A.  N >= 0.
 32 *
 33 *  KL      (input) INTEGER
 34 *          The number of nonzero subdiagonals within the band of A.
 35 *          0 <= KL <= M-1.
 36 *
 37 *  KU      (input) INTEGER
 38 *          The number of nonzero superdiagonals within the band of A.
 39 *          0 <= KU <= N-1.
 40 *
 41 *  D       (input) REAL array, dimension (min(M,N))
 42 *          The diagonal elements of the diagonal matrix D.
 43 *
 44 *  A       (output) COMPLEX array, dimension (LDA,N)
 45 *          The generated m by n matrix A.
 46 *
 47 *  LDA     (input) INTEGER
 48 *          The leading dimension of the array A.  LDA >= M.
 49 *
 50 *  ISEED   (input/output) INTEGER array, dimension (4)
 51 *          On entry, the seed of the random number generator; the array
 52 *          elements must be between 0 and 4095, and ISEED(4) must be
 53 *          odd.
 54 *          On exit, the seed is updated.
 55 *
 56 *  WORK    (workspace) COMPLEX array, dimension (M+N)
 57 *
 58 *  INFO    (output) INTEGER
 59 *          = 0: successful exit
 60 *          < 0: if INFO = -i, the i-th argument had an illegal value
 61 *
 62 *  =====================================================================
 63 *
 64 *     .. Parameters ..
 65       COMPLEX            ZERO, ONE
 66       PARAMETER          ( ZERO = ( 0.0E+00.0E+0 ),
 67      $                   ONE = ( 1.0E+00.0E+0 ) )
 68 *     ..
 69 *     .. Local Scalars ..
 70       INTEGER            I, J
 71       REAL               WN
 72       COMPLEX            TAU, WA, WB
 73 *     ..
 74 *     .. External Subroutines ..
 75       EXTERNAL           CGEMV, CGERC, CLACGV, CLARNV, CSCAL, XERBLA
 76 *     ..
 77 *     .. Intrinsic Functions ..
 78       INTRINSIC          ABSMAXMIN, REAL
 79 *     ..
 80 *     .. External Functions ..
 81       REAL               SCNRM2
 82       EXTERNAL           SCNRM2
 83 *     ..
 84 *     .. Executable Statements ..
 85 *
 86 *     Test the input arguments
 87 *
 88       INFO = 0
 89       IF( M.LT.0 ) THEN
 90          INFO = -1
 91       ELSE IF( N.LT.0 ) THEN
 92          INFO = -2
 93       ELSE IF( KL.LT.0 .OR. KL.GT.M-1 ) THEN
 94          INFO = -3
 95       ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
 96          INFO = -4
 97       ELSE IF( LDA.LT.MAX1, M ) ) THEN
 98          INFO = -7
 99       END IF
100       IF( INFO.LT.0 ) THEN
101          CALL XERBLA( 'CLAGGE'-INFO )
102          RETURN
103       END IF
104 *
105 *     initialize A to diagonal matrix
106 *
107       DO 20 J = 1, N
108          DO 10 I = 1, M
109             A( I, J ) = ZERO
110    10    CONTINUE
111    20 CONTINUE
112       DO 30 I = 1MIN( M, N )
113          A( I, I ) = D( I )
114    30 CONTINUE
115 *
116 *     pre- and post-multiply A by random unitary matrices
117 *
118       DO 40 I = MIN( M, N ), 1-1
119          IF( I.LT.M ) THEN
120 *
121 *           generate random reflection
122 *
123             CALL CLARNV( 3, ISEED, M-I+1, WORK )
124             WN = SCNRM2( M-I+1, WORK, 1 )
125             WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
126             IF( WN.EQ.ZERO ) THEN
127                TAU = ZERO
128             ELSE
129                WB = WORK( 1 ) + WA
130                CALL CSCAL( M-I, ONE / WB, WORK( 2 ), 1 )
131                WORK( 1 ) = ONE
132                TAU = REAL( WB / WA )
133             END IF
134 *
135 *           multiply A(i:m,i:n) by random reflection from the left
136 *
137             CALL CGEMV( 'Conjugate transpose', M-I+1, N-I+1, ONE,
138      $                  A( I, I ), LDA, WORK, 1, ZERO, WORK( M+1 ), 1 )
139             CALL CGERC( M-I+1, N-I+1-TAU, WORK, 1, WORK( M+1 ), 1,
140      $                  A( I, I ), LDA )
141          END IF
142          IF( I.LT.N ) THEN
143 *
144 *           generate random reflection
145 *
146             CALL CLARNV( 3, ISEED, N-I+1, WORK )
147             WN = SCNRM2( N-I+1, WORK, 1 )
148             WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
149             IF( WN.EQ.ZERO ) THEN
150                TAU = ZERO
151             ELSE
152                WB = WORK( 1 ) + WA
153                CALL CSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
154                WORK( 1 ) = ONE
155                TAU = REAL( WB / WA )
156             END IF
157 *
158 *           multiply A(i:m,i:n) by random reflection from the right
159 *
160             CALL CGEMV( 'No transpose', M-I+1, N-I+1, ONE, A( I, I ),
161      $                  LDA, WORK, 1, ZERO, WORK( N+1 ), 1 )
162             CALL CGERC( M-I+1, N-I+1-TAU, WORK( N+1 ), 1, WORK, 1,
163      $                  A( I, I ), LDA )
164          END IF
165    40 CONTINUE
166 *
167 *     Reduce number of subdiagonals to KL and number of superdiagonals
168 *     to KU
169 *
170       DO 70 I = 1MAX( M-1-KL, N-1-KU )
171          IF( KL.LE.KU ) THEN
172 *
173 *           annihilate subdiagonal elements first (necessary if KL = 0)
174 *
175             IF( I.LE.MIN( M-1-KL, N ) ) THEN
176 *
177 *              generate reflection to annihilate A(kl+i+1:m,i)
178 *
179                WN = SCNRM2( M-KL-I+1, A( KL+I, I ), 1 )
180                WA = ( WN / ABS( A( KL+I, I ) ) )*A( KL+I, I )
181                IF( WN.EQ.ZERO ) THEN
182                   TAU = ZERO
183                ELSE
184                   WB = A( KL+I, I ) + WA
185                   CALL CSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 )
186                   A( KL+I, I ) = ONE
187                   TAU = REAL( WB / WA )
188                END IF
189 *
190 *              apply reflection to A(kl+i:m,i+1:n) from the left
191 *
192                CALL CGEMV( 'Conjugate transpose', M-KL-I+1, N-I, ONE,
193      $                     A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO,
194      $                     WORK, 1 )
195                CALL CGERC( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK,
196      $                     1, A( KL+I, I+1 ), LDA )
197                A( KL+I, I ) = -WA
198             END IF
199 *
200             IF( I.LE.MIN( N-1-KU, M ) ) THEN
201 *
202 *              generate reflection to annihilate A(i,ku+i+1:n)
203 *
204                WN = SCNRM2( N-KU-I+1, A( I, KU+I ), LDA )
205                WA = ( WN / ABS( A( I, KU+I ) ) )*A( I, KU+I )
206                IF( WN.EQ.ZERO ) THEN
207                   TAU = ZERO
208                ELSE
209                   WB = A( I, KU+I ) + WA
210                   CALL CSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA )
211                   A( I, KU+I ) = ONE
212                   TAU = REAL( WB / WA )
213                END IF
214 *
215 *              apply reflection to A(i+1:m,ku+i:n) from the right
216 *
217                CALL CLACGV( N-KU-I+1, A( I, KU+I ), LDA )
218                CALL CGEMV( 'No transpose', M-I, N-KU-I+1, ONE,
219      $                     A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO,
220      $                     WORK, 1 )
221                CALL CGERC( M-I, N-KU-I+1-TAU, WORK, 1, A( I, KU+I ),
222      $                     LDA, A( I+1, KU+I ), LDA )
223                A( I, KU+I ) = -WA
224             END IF
225          ELSE
226 *
227 *           annihilate superdiagonal elements first (necessary if
228 *           KU = 0)
229 *
230             IF( I.LE.MIN( N-1-KU, M ) ) THEN
231 *
232 *              generate reflection to annihilate A(i,ku+i+1:n)
233 *
234                WN = SCNRM2( N-KU-I+1, A( I, KU+I ), LDA )
235                WA = ( WN / ABS( A( I, KU+I ) ) )*A( I, KU+I )
236                IF( WN.EQ.ZERO ) THEN
237                   TAU = ZERO
238                ELSE
239                   WB = A( I, KU+I ) + WA
240                   CALL CSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA )
241                   A( I, KU+I ) = ONE
242                   TAU = REAL( WB / WA )
243                END IF
244 *
245 *              apply reflection to A(i+1:m,ku+i:n) from the right
246 *
247                CALL CLACGV( N-KU-I+1, A( I, KU+I ), LDA )
248                CALL CGEMV( 'No transpose', M-I, N-KU-I+1, ONE,
249      $                     A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO,
250      $                     WORK, 1 )
251                CALL CGERC( M-I, N-KU-I+1-TAU, WORK, 1, A( I, KU+I ),
252      $                     LDA, A( I+1, KU+I ), LDA )
253                A( I, KU+I ) = -WA
254             END IF
255 *
256             IF( I.LE.MIN( M-1-KL, N ) ) THEN
257 *
258 *              generate reflection to annihilate A(kl+i+1:m,i)
259 *
260                WN = SCNRM2( M-KL-I+1, A( KL+I, I ), 1 )
261                WA = ( WN / ABS( A( KL+I, I ) ) )*A( KL+I, I )
262                IF( WN.EQ.ZERO ) THEN
263                   TAU = ZERO
264                ELSE
265                   WB = A( KL+I, I ) + WA
266                   CALL CSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 )
267                   A( KL+I, I ) = ONE
268                   TAU = REAL( WB / WA )
269                END IF
270 *
271 *              apply reflection to A(kl+i:m,i+1:n) from the left
272 *
273                CALL CGEMV( 'Conjugate transpose', M-KL-I+1, N-I, ONE,
274      $                     A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO,
275      $                     WORK, 1 )
276                CALL CGERC( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK,
277      $                     1, A( KL+I, I+1 ), LDA )
278                A( KL+I, I ) = -WA
279             END IF
280          END IF
281 *
282          DO 50 J = KL + I + 1, M
283             A( J, I ) = ZERO
284    50    CONTINUE
285 *
286          DO 60 J = KU + I + 1, N
287             A( I, J ) = ZERO
288    60    CONTINUE
289    70 CONTINUE
290       RETURN
291 *
292 *     End of CLAGGE
293 *
294       END