1       SUBROUTINE CLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO )
  2 *
  3 *  -- LAPACK auxiliary test routine (version 3.1) --
  4 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  5 *     June 2010
  6 *
  7 *     .. Scalar Arguments ..
  8       CHARACTER          INIT, SIDE
  9       INTEGER            INFO, LDA, M, N
 10 *     ..
 11 *     .. Array Arguments ..
 12       INTEGER            ISEED( 4 )
 13       COMPLEX            A( LDA, * ), X( * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *     CLAROR pre- or post-multiplies an M by N matrix A by a random
 20 *     unitary matrix U, overwriting A. A may optionally be
 21 *     initialized to the identity matrix before multiplying by U.
 22 *     U is generated using the method of G.W. Stewart
 23 *     ( SIAM J. Numer. Anal. 17, 1980, pp. 403-409 ).
 24 *     (BLAS-2 version)
 25 *
 26 *  Arguments
 27 *  =========
 28 *
 29 *  SIDE     (input) CHARACTER*1
 30 *           SIDE specifies whether A is multiplied on the left or right
 31 *           by U.
 32 *       SIDE = 'L'   Multiply A on the left (premultiply) by U
 33 *       SIDE = 'R'   Multiply A on the right (postmultiply) by U*
 34 *       SIDE = 'C'   Multiply A on the left by U and the right by U*
 35 *       SIDE = 'T'   Multiply A on the left by U and the right by U'
 36 *           Not modified.
 37 *
 38 *  INIT     (input) CHARACTER*1
 39 *           INIT specifies whether or not A should be initialized to
 40 *           the identity matrix.
 41 *              INIT = 'I'   Initialize A to (a section of) the
 42 *                           identity matrix before applying U.
 43 *              INIT = 'N'   No initialization.  Apply U to the
 44 *                           input matrix A.
 45 *
 46 *           INIT = 'I' may be used to generate square (i.e., unitary)
 47 *           or rectangular orthogonal matrices (orthogonality being
 48 *           in the sense of CDOTC):
 49 *
 50 *           For square matrices, M=N, and SIDE many be either 'L' or
 51 *           'R'; the rows will be orthogonal to each other, as will the
 52 *           columns.
 53 *           For rectangular matrices where M < N, SIDE = 'R' will
 54 *           produce a dense matrix whose rows will be orthogonal and
 55 *           whose columns will not, while SIDE = 'L' will produce a
 56 *           matrix whose rows will be orthogonal, and whose first M
 57 *           columns will be orthogonal, the remaining columns being
 58 *           zero.
 59 *           For matrices where M > N, just use the previous
 60 *           explaination, interchanging 'L' and 'R' and "rows" and
 61 *           "columns".
 62 *
 63 *           Not modified.
 64 *
 65 *  M        (input) INTEGER
 66 *           Number of rows of A. Not modified.
 67 *
 68 *  N        (input) INTEGER
 69 *           Number of columns of A. Not modified.
 70 *
 71 *  A        (input/output) COMPLEX array, dimension ( LDA, N )
 72 *           Input and output array. Overwritten by U A ( if SIDE = 'L' )
 73 *           or by A U ( if SIDE = 'R' )
 74 *           or by U A U* ( if SIDE = 'C')
 75 *           or by U A U' ( if SIDE = 'T') on exit.
 76 *
 77 *  LDA       (input) INTEGER
 78 *           Leading dimension of A. Must be at least MAX ( 1, M ).
 79 *           Not modified.
 80 *
 81 *  ISEED    (input/output) INTEGER array, dimension ( 4 )
 82 *           On entry ISEED specifies the seed of the random number
 83 *           generator. The array elements should be between 0 and 4095;
 84 *           if not they will be reduced mod 4096.  Also, ISEED(4) must
 85 *           be odd.  The random number generator uses a linear
 86 *           congruential sequence limited to small integers, and so
 87 *           should produce machine independent random numbers. The
 88 *           values of ISEED are changed on exit, and can be used in the
 89 *           next call to CLAROR to continue the same random number
 90 *           sequence.
 91 *           Modified.
 92 *
 93 *  X        (workspace) COMPLEX array, dimension ( 3*MAX( M, N ) )
 94 *           Workspace. Of length:
 95 *               2*M + N if SIDE = 'L',
 96 *               2*N + M if SIDE = 'R',
 97 *               3*N     if SIDE = 'C' or 'T'.
 98 *           Modified.
 99 *
100 *  INFO     (output) INTEGER
101 *           An error flag.  It is set to:
102 *            0  if no error.
103 *            1  if CLARND returned a bad random number (installation
104 *               problem)
105 *           -1  if SIDE is not L, R, C, or T.
106 *           -3  if M is negative.
107 *           -4  if N is negative or if SIDE is C or T and N is not equal
108 *               to M.
109 *           -6  if LDA is less than M.
110 *
111 *  =====================================================================
112 *
113 *     .. Parameters ..
114       REAL               ZERO, ONE, TOOSML
115       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0,
116      $                   TOOSML = 1.0E-20 )
117       COMPLEX            CZERO, CONE
118       PARAMETER          ( CZERO = ( 0.0E+00.0E+0 ),
119      $                   CONE = ( 1.0E+00.0E+0 ) )
120 *     ..
121 *     .. Local Scalars ..
122       INTEGER            IROW, ITYPE, IXFRM, J, JCOL, KBEG, NXFRM
123       REAL               FACTOR, XABS, XNORM
124       COMPLEX            CSIGN, XNORMS
125 *     ..
126 *     .. External Functions ..
127       LOGICAL            LSAME
128       REAL               SCNRM2
129       COMPLEX            CLARND
130       EXTERNAL           LSAME, SCNRM2, CLARND
131 *     ..
132 *     .. External Subroutines ..
133       EXTERNAL           CGEMV, CGERC, CLACGV, CLASET, CSCAL, XERBLA
134 *     ..
135 *     .. Intrinsic Functions ..
136       INTRINSIC          ABSCMPLXCONJG
137 *     ..
138 *     .. Executable Statements ..
139 *
140       IF( N.EQ.0 .OR. M.EQ.0 )
141      $   RETURN
142 *
143       ITYPE = 0
144       IF( LSAME( SIDE, 'L' ) ) THEN
145          ITYPE = 1
146       ELSE IF( LSAME( SIDE, 'R' ) ) THEN
147          ITYPE = 2
148       ELSE IF( LSAME( SIDE, 'C' ) ) THEN
149          ITYPE = 3
150       ELSE IF( LSAME( SIDE, 'T' ) ) THEN
151          ITYPE = 4
152       END IF
153 *
154 *     Check for argument errors.
155 *
156       INFO = 0
157       IF( ITYPE.EQ.0 ) THEN
158          INFO = -1
159       ELSE IF( M.LT.0 ) THEN
160          INFO = -3
161       ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.3 .AND. N.NE.M ) ) THEN
162          INFO = -4
163       ELSE IF( LDA.LT.M ) THEN
164          INFO = -6
165       END IF
166       IF( INFO.NE.0 ) THEN
167          CALL XERBLA( 'CLAROR'-INFO )
168          RETURN
169       END IF
170 *
171       IF( ITYPE.EQ.1 ) THEN
172          NXFRM = M
173       ELSE
174          NXFRM = N
175       END IF
176 *
177 *     Initialize A to the identity matrix if desired
178 *
179       IF( LSAME( INIT, 'I' ) )
180      $   CALL CLASET( 'Full', M, N, CZERO, CONE, A, LDA )
181 *
182 *     If no rotation possible, still multiply by
183 *     a random complex number from the circle |x| = 1
184 *
185 *      2)      Compute Rotation by computing Householder
186 *              Transformations H(2), H(3), ..., H(n).  Note that the
187 *              order in which they are computed is irrelevant.
188 *
189       DO 40 J = 1, NXFRM
190          X( J ) = CZERO
191    40 CONTINUE
192 *
193       DO 60 IXFRM = 2, NXFRM
194          KBEG = NXFRM - IXFRM + 1
195 *
196 *        Generate independent normal( 0, 1 ) random numbers
197 *
198          DO 50 J = KBEG, NXFRM
199             X( J ) = CLARND( 3, ISEED )
200    50    CONTINUE
201 *
202 *        Generate a Householder transformation from the random vector X
203 *
204          XNORM = SCNRM2( IXFRM, X( KBEG ), 1 )
205          XABS = ABS( X( KBEG ) )
206          IF( XABS.NE.CZERO ) THEN
207             CSIGN = X( KBEG ) / XABS
208          ELSE
209             CSIGN = CONE
210          END IF
211          XNORMS = CSIGN*XNORM
212          X( NXFRM+KBEG ) = -CSIGN
213          FACTOR = XNORM*( XNORM+XABS )
214          IFABS( FACTOR ).LT.TOOSML ) THEN
215             INFO = 1
216             CALL XERBLA( 'CLAROR'-INFO )
217             RETURN
218          ELSE
219             FACTOR = ONE / FACTOR
220          END IF
221          X( KBEG ) = X( KBEG ) + XNORMS
222 *
223 *        Apply Householder transformation to A
224 *
225          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 .OR. ITYPE.EQ.4 ) THEN
226 *
227 *           Apply H(k) on the left of A
228 *
229             CALL CGEMV( 'C', IXFRM, N, CONE, A( KBEG, 1 ), LDA,
230      $                  X( KBEG ), 1, CZERO, X( 2*NXFRM+1 ), 1 )
231             CALL CGERC( IXFRM, N, -CMPLX( FACTOR ), X( KBEG ), 1,
232      $                  X( 2*NXFRM+1 ), 1, A( KBEG, 1 ), LDA )
233 *
234          END IF
235 *
236          IF( ITYPE.GE.2 .AND. ITYPE.LE.4 ) THEN
237 *
238 *           Apply H(k)* (or H(k)') on the right of A
239 *
240             IF( ITYPE.EQ.4 ) THEN
241                CALL CLACGV( IXFRM, X( KBEG ), 1 )
242             END IF
243 *
244             CALL CGEMV( 'N', M, IXFRM, CONE, A( 1, KBEG ), LDA,
245      $                  X( KBEG ), 1, CZERO, X( 2*NXFRM+1 ), 1 )
246             CALL CGERC( M, IXFRM, -CMPLX( FACTOR ), X( 2*NXFRM+1 ), 1,
247      $                  X( KBEG ), 1, A( 1, KBEG ), LDA )
248 *
249          END IF
250    60 CONTINUE
251 *
252       X( 1 ) = CLARND( 3, ISEED )
253       XABS = ABS( X( 1 ) )
254       IF( XABS.NE.ZERO ) THEN
255          CSIGN = X( 1 ) / XABS
256       ELSE
257          CSIGN = CONE
258       END IF
259       X( 2*NXFRM ) = CSIGN
260 *
261 *     Scale the matrix A by D.
262 *
263       IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 .OR. ITYPE.EQ.4 ) THEN
264          DO 70 IROW = 1, M
265             CALL CSCAL( N, CONJG( X( NXFRM+IROW ) ), A( IROW, 1 ), LDA )
266    70    CONTINUE
267       END IF
268 *
269       IF( ITYPE.EQ.2 .OR. ITYPE.EQ.3 ) THEN
270          DO 80 JCOL = 1, N
271             CALL CSCAL( M, X( NXFRM+JCOL ), A( 1, JCOL ), 1 )
272    80    CONTINUE
273       END IF
274 *
275       IF( ITYPE.EQ.4 ) THEN
276          DO 90 JCOL = 1, N
277             CALL CSCAL( M, CONJG( X( NXFRM+JCOL ) ), A( 1, JCOL ), 1 )
278    90    CONTINUE
279       END IF
280       RETURN
281 *
282 *     End of CLAROR
283 *
284       END