1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 <doc 203 204 205 206 207 208 209 210 211 212 213 214 215 <doc 216 217 218 219 220 221 222 223 224 225 226 227 228 <doc 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 <doc 247 248 249 250 251 252 253 254 255 256 257 258 259 <doc 260 261 262 263 264 265 266 267 268 269 270 271 272 <doc 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 <doc 291 292 293 294 295 296 297 298 299 300 301 302 303 <doc 304 305 306 307 308 309 310 311 312 313 314 315 316 <doc 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 <doc 338 339 340 341 342 343 344 345 346 347 348 349 350 <doc 351 352 353 354 355 356 357 358 359 360 361 362 363 <doc 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 <doc 382 383 384 385 386 387 388 389 390 391 392 393 394 <doc 395 396 397 398 399 400 401 402 403 404 405 406 407 408 <doc 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 <doc 427 428 429 430 431 432 433 434 435 436 437 438 439 <doc 440 441 442 443 444 445 446 447 448 449 450 451 452 <doc 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
/*
* Copyright (c) 2011, Michael Lehn * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1) Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3) Neither the name of the FLENS development group nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef FLENS_BLAS_CLOSURES_TWEAKS_RK_H #define FLENS_BLAS_CLOSURES_TWEAKS_RK_H 1 #include <flens/blas/closures/tweaks/defaulteval.h> #include <flens/blas/closures/tweaks/r.h> #include <flens/blas/operators/operators.h> #include <flens/matrixtypes/matrixtypes.h> #include <flens/typedefs.h> #include <flens/vectortypes/vectortypes.h> namespace flens { namespace blas { // // Real cases, i.e. not conjugated // // // Matrix closure of form: MA1*MA2^T // template <typename MA1, typename MA2> using MatrixClosureRKU1_ = MatrixClosure<OpMult, MA1, MatrixClosureOpTrans<MA2> >; // // Matrix closure of form: MB + MA1*MA2^T // template <typename MB, typename MA1, typename MA2> using MatrixClosureRKU1 = MatrixClosure<OpAdd, MB, MatrixClosureRKU1_<MA1, MA2> >; // // Matrix closure of form: MA1^T*MA2 // template <typename MA1, typename MA2> using MatrixClosureRKU2_ = MatrixClosure<OpMult, MatrixClosureOpTrans<MA1>, MA2 >; // // Matrix closure of form: MB + MA1^T*MA2 // template <typename MB, typename MA1, typename MA2> using MatrixClosureRKU2 = MatrixClosure<OpAdd, MB, MatrixClosureRKU2_<MA1, MA2> >; // // Matrix closure of form: (SV*MA1^T)*MA2 // template <typename SV, typename MA1, typename MA2> using MatrixClosureRKU3_ = MatrixClosure<OpMult, MatrixClosure<OpMult, ScalarValue<SV>, MatrixClosureOpTrans<MA1> >, MA2 >; // // Matrix closure of form: MB + (SV*MA1^T)*MA2 // template <typename MB, typename SV, typename MA1, typename MA2> using MatrixClosureRKU3 = MatrixClosure<OpAdd, MB, MatrixClosureRKU3_<SV, MA1, MA2> >; // // Complex cases // // // Matrix closure of form: MA1*MA2^H // template <typename MA1, typename MA2> using MatrixClosureRKC1_ = MatrixClosure<OpMult, MA1, MatrixClosureOpConjTrans<MA2> >; // // Matrix closure of form: MB + MA1*MA2^H // template <typename MB, typename MA1, typename MA2> using MatrixClosureRKC1 = MatrixClosure<OpAdd, MB, MatrixClosureRKC1_<MA1, MA2> >; // // Matrix closure of form: MA1^H*MA2 // template <typename MA1, typename MA2> using MatrixClosureRKC2_ = MatrixClosure<OpMult, MatrixClosureOpConjTrans<MA1>, MA2 >; // // Matrix closure of form: MB + MA1^H*MA2 // template <typename MB, typename MA1, typename MA2> using MatrixClosureRKC2 = MatrixClosure<OpAdd, MB, MatrixClosureRKC2_<MA1, MA2> >; // // Matrix closure of form: (SV*MA1^H)*MA2 // template <typename SV, typename MA1, typename MA2> using MatrixClosureRKC3_ = MatrixClosure<OpMult, MatrixClosure<OpMult, ScalarValue<SV>, MatrixClosureOpConjTrans<MA1> >, MA2 >; // // Matrix closure of form: MB + (SV*MA1^H)*MA2 // template <typename MB, typename SV, typename MA1, typename MA2> using MatrixClosureRKC3 = MatrixClosure<OpAdd, MB, MatrixClosureRKC3_<SV, MA1, MA2> >; //-- SymmetricMatrix ----------------------------------------------------------- // // Case 1: trans==NoTrans // // // C += a*A*A^T // template <typename ALPHA, typename MA1, typename MA2, typename MC> typename RestrictTo<DefaultEval<MatrixClosureRKU1_<MA1, MA2> >::value && IsMatrix<MA1>::value && IsMatrix<MA2>::value && IsSymmetricMatrix<MC>::value, void>::Type axpy(Transpose trans, const ALPHA &alpha, const MatrixClosureRKU1_<MA1, MA2> &aAAt, MC &C); // // C = a*A*A^T // template <typename MA1, typename MA2, typename MC> typename RestrictTo<DefaultEval<MatrixClosureRKU1_<MA1, MA2> >::value && IsMatrix<MA1>::value && IsMatrix<MA2>::value && IsSymmetricMatrix<MC>::value, void>::Type copy(Transpose trans, const MatrixClosureRKU1_<MA1, MA2> &aAAt, MC &C); // // C = b*B + a*A*A^T // template <typename MB, typename MA1, typename MA2, typename MC> typename RestrictTo<DefaultEval<MatrixClosureRKU1<MB, MA1, MA2> >::value && IsMatrix<MB>::value && IsMatrix<MA1>::value && IsMatrix<MA2>::value && IsSymmetricMatrix<MC>::value, void>::Type copy(Transpose trans, const MatrixClosureRKU1<MB, MA1, MA2> &bB_aAAt, MC &C); // // Case 2: trans==Trans, alpha==1 // // // C += A^T*A // template <typename ALPHA, typename MA1, typename MA2, typename MC> typename RestrictTo<DefaultEval<MatrixClosureRKU2_<MA1, MA2> >::value && IsMatrix<MA1>::value && IsMatrix<MA2>::value && IsSymmetricMatrix<MC>::value, void>::Type axpy(Transpose trans, const ALPHA &alpha, const MatrixClosureRKU2_<MA1, MA2> &AtA, MC &C); // // C = A^T*A // template <typename MA1, typename MA2, typename MC> typename RestrictTo<DefaultEval<MatrixClosureRKU2_<MA1, MA2> >::value && IsMatrix<MA1>::value && IsMatrix<MA2>::value && IsSymmetricMatrix<MC>::value, void>::Type copy(Transpose trans, const MatrixClosureRKU2_<MA1, MA2> &AtA, MC &C); // // C = b*B + A^T*A // template <typename MB, typename MA1, typename MA2, typename MC> typename RestrictTo<DefaultEval<MatrixClosureRKU2<MB, MA1, MA2> >::value && IsMatrix<MB>::value && IsMatrix<MA1>::value && IsMatrix<MA2>::value && IsSymmetricMatrix<MC>::value, void>::Type copy(Transpose trans, const MatrixClosureRKU2<MB, MA1, MA2> &bB_AtA, MC &C); // // Case 3: trans==Trans, alpha // // // C += a*A^T*A // template <typename ALPHA, typename SV, typename MA1, typename MA2, typename MC> typename RestrictTo<DefaultEval<MatrixClosureRKU3_<SV, MA1, MA2> >::value && IsMatrix<MA1>::value && IsMatrix<MA2>::value && IsSymmetricMatrix<MC>::value, void>::Type axpy(Transpose trans, const ALPHA &alpha, const MatrixClosureRKU3_<SV, MA1, MA2> &aAtA, MC &C); // // C = a*A^T*A // template <typename SV, typename MA1, typename MA2, typename MC> typename RestrictTo<DefaultEval<MatrixClosureRKU3_<SV, MA1, MA2> >::value && IsMatrix<MA1>::value && IsMatrix<MA2>::value && IsSymmetricMatrix<MC>::value, void>::Type copy(Transpose trans, const MatrixClosureRKU3_<SV, MA1, MA2> &aAtA, MC &C); // // C = b*B + a*A^T*A // template <typename MB, typename SV, typename MA1, typename MA2, typename MC> typename RestrictTo<DefaultEval<MatrixClosureRKU3<MB, SV, MA1, MA2> >::value && IsMatrix<MB>::value && IsMatrix<MA1>::value && IsMatrix<MA2>::value && IsSymmetricMatrix<MC>::value, void>::Type copy(Transpose trans, const MatrixClosureRKU3<MB, SV, MA1, MA2> &bB_AtA, MC &C); //-- HermitianMatrix ----------------------------------------------------------- // // Case 1: trans==NoTrans // // // C += a*A*A^H // template <typename ALPHA, typename MA1, typename MA2, typename MC> typename RestrictTo<DefaultEval<MatrixClosureRKC1_<MA1, MA2> >::value && IsMatrix<MA1>::value && IsMatrix<MA2>::value && IsHermitianMatrix<MC>::value, void>::Type axpy(Transpose trans, const ALPHA &alpha, const MatrixClosureRKC1_<MA1, MA2> &aAAh, MC &C); // // C = a*A*A^H // template <typename MA1, typename MA2, typename MC> typename RestrictTo<DefaultEval<MatrixClosureRKC1_<MA1, MA2> >::value && IsMatrix<MA1>::value && IsMatrix<MA2>::value && IsHermitianMatrix<MC>::value, void>::Type copy(Transpose trans, const MatrixClosureRKC1_<MA1, MA2> &aAAh, MC &C); // // C = b*B + a*A*A^H // template <typename MB, typename MA1, typename MA2, typename MC> typename RestrictTo<DefaultEval<MatrixClosureRKC1<MB, MA1, MA2> >::value && IsMatrix<MB>::value && IsMatrix<MA1>::value && IsMatrix<MA2>::value && IsHermitianMatrix<MC>::value, void>::Type copy(Transpose trans, const MatrixClosureRKC1<MB, MA1, MA2> &bB_aAAh, MC &C); // // Case 2: trans==Trans, alpha==1 // // // C += A^H*A // template <typename ALPHA, typename MA1, typename MA2, typename MC> typename RestrictTo<DefaultEval<MatrixClosureRKC2_<MA1, MA2> >::value && IsMatrix<MA1>::value && IsMatrix<MA2>::value && IsHermitianMatrix<MC>::value, void>::Type axpy(Transpose trans, const ALPHA &alpha, const MatrixClosureRKC2_<MA1, MA2> &AhA, MC &C); // // C = A^H*A // template <typename MA1, typename MA2, typename MC> typename RestrictTo<DefaultEval<MatrixClosureRKC2_<MA1, MA2> >::value && IsMatrix<MA1>::value && IsMatrix<MA2>::value && IsHermitianMatrix<MC>::value, void>::Type copy(Transpose trans, const MatrixClosureRKC2_<MA1, MA2> &AhA, MC &C); // // C = b*B + A^H*A // template <typename MB, typename MA1, typename MA2, typename MC> typename RestrictTo<DefaultEval<MatrixClosureRKC2<MB, MA1, MA2> >::value && IsMatrix<MB>::value && IsMatrix<MA1>::value && IsMatrix<MA2>::value && IsHermitianMatrix<MC>::value, void>::Type copy(Transpose trans, const MatrixClosureRKC2<MB, MA1, MA2> &bB_AhA, MC &C); // // Case 3: trans==Trans, alpha // // // C += a*A^H*A // template <typename ALPHA, typename SV, typename MA1, typename MA2, typename MC> typename RestrictTo<DefaultEval<MatrixClosureRKC3_<SV, MA1, MA2> >::value && IsMatrix<MA1>::value && IsMatrix<MA2>::value && IsHermitianMatrix<MC>::value, void>::Type axpy(Transpose trans, const ALPHA &alpha, const MatrixClosureRKC3_<SV, MA1, MA2> &aAtA, MC &C); // // C = a*A^H*A // template <typename SV, typename MA1, typename MA2, typename MC> typename RestrictTo<DefaultEval<MatrixClosureRKC3_<SV, MA1, MA2> >::value && IsMatrix<MA1>::value && IsMatrix<MA2>::value && IsHermitianMatrix<MC>::value, void>::Type copy(Transpose trans, const MatrixClosureRKC3_<SV, MA1, MA2> &aAtA, MC &C); // // C = b*B + a*A^H*A // template <typename MB, typename SV, typename MA1, typename MA2, typename MC> typename RestrictTo<DefaultEval<MatrixClosureRKC3<MB, SV, MA1, MA2> >::value && IsMatrix<MB>::value && IsMatrix<MA1>::value && IsMatrix<MA2>::value && IsHermitianMatrix<MC>::value, void>::Type copy(Transpose trans, const MatrixClosureRKC3<MB, SV, MA1, MA2> &bB_AtA, MC &C); } } // namespace blas, flens #endif // FLENS_BLAS_CLOSURES_TWEAKS_RK_H |