1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
<doc 203
     204
     205
     206
     207
     208
     209
     210
     211

     212
     213
     214
     215
<doc 216
     217
     218
     219
     220
     221
     222
     223
     224

     225
     226
     227
     228
<doc 229
     230
     231
     232
     233
     234
     235
     236
     237
     238

     239
     240
     241
     242
     243
     244
     245
     246
<doc 247
     248
     249
     250
     251
     252
     253
     254
     255

     256
     257
     258
     259
<doc 260
     261
     262
     263
     264
     265
     266
     267
     268

     269
     270
     271
     272
<doc 273
     274
     275
     276
     277
     278
     279
     280
     281
     282

     283
     284
     285
     286
     287
     288
     289
     290
<doc 291
     292
     293
     294
     295
     296
     297
     298
     299

     300
     301
     302
     303
<doc 304
     305
     306
     307
     308
     309
     310
     311
     312

     313
     314
     315
     316
<doc 317
     318
     319
     320
     321
     322
     323
     324
     325
     326

     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
<doc 338
     339
     340
     341
     342
     343
     344
     345
     346

     347
     348
     349
     350
<doc 351
     352
     353
     354
     355
     356
     357
     358
     359

     360
     361
     362
     363
<doc 364
     365
     366
     367
     368
     369
     370
     371
     372
     373

     374
     375
     376
     377
     378
     379
     380
     381
<doc 382
     383
     384
     385
     386
     387
     388
     389
     390

     391
     392
     393
     394
<doc 395
     396
     397
     398
     399
     400
     401
     402
     403

     404
     405
     406
     407
     408
<doc 409
     410
     411
     412
     413
     414
     415
     416
     417
     418

     419
     420
     421
     422
     423
     424
     425
     426
<doc 427
     428
     429
     430
     431
     432
     433
     434
     435

     436
     437
     438
     439
<doc 440
     441
     442
     443
     444
     445
     446
     447
     448

     449
     450
     451
     452
<doc 453
     454
     455
     456
     457
     458
     459
     460
     461
     462

     463
     464
     465
     466
     467
/*
 *   Copyright (c) 2011, Michael Lehn
 *
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *   1) Redistributions of source code must retain the above copyright
 *      notice, this list of conditions and the following disclaimer.
 *   2) Redistributions in binary form must reproduce the above copyright
 *      notice, this list of conditions and the following disclaimer in
 *      the documentation and/or other materials provided with the
 *      distribution.
 *   3) Neither the name of the FLENS development group nor the names of
 *      its contributors may be used to endorse or promote products derived
 *      from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef FLENS_BLAS_CLOSURES_TWEAKS_RK_H
#define FLENS_BLAS_CLOSURES_TWEAKS_RK_H 1

#include <flens/blas/closures/tweaks/defaulteval.h>
#include <flens/blas/closures/tweaks/r.h>
#include <flens/blas/operators/operators.h>
#include <flens/matrixtypes/matrixtypes.h>
#include <flens/typedefs.h>
#include <flens/vectortypes/vectortypes.h>

namespace flens { namespace blas {

//
//  Real cases, i.e. not conjugated
//

//
//  Matrix closure of form:  MA1*MA2^T
//
template <typename MA1, typename MA2>
using MatrixClosureRKU1_ =

    MatrixClosure<OpMult,
                  MA1,
                  MatrixClosureOpTrans<MA2>
                 >;

//
//  Matrix closure of form:  MB + MA1*MA2^T
//
template <typename MB, typename MA1, typename MA2>
using MatrixClosureRKU1 =

    MatrixClosure<OpAdd,
                  MB,
                  MatrixClosureRKU1_<MA1, MA2>
                 >;

//
//  Matrix closure of form:  MA1^T*MA2
//
template <typename MA1, typename MA2>
using MatrixClosureRKU2_ =

    MatrixClosure<OpMult,
                  MatrixClosureOpTrans<MA1>,
                  MA2
                 >;

//
//  Matrix closure of form:  MB + MA1^T*MA2
//
template <typename MB, typename MA1, typename MA2>
using MatrixClosureRKU2 =

    MatrixClosure<OpAdd,
                  MB,
                  MatrixClosureRKU2_<MA1, MA2>
                 >;

//
//  Matrix closure of form:  (SV*MA1^T)*MA2
//
template <typename SV, typename MA1, typename MA2>
using MatrixClosureRKU3_ =

    MatrixClosure<OpMult,
                  MatrixClosure<OpMult,
                                ScalarValue<SV>,
                                MatrixClosureOpTrans<MA1>
                               >,
                  MA2
                 >;

//
//  Matrix closure of form:  MB + (SV*MA1^T)*MA2
//
template <typename MB, typename SV, typename MA1, typename MA2>
using MatrixClosureRKU3 =

    MatrixClosure<OpAdd,
                  MB,
                  MatrixClosureRKU3_<SV, MA1, MA2>
                 >;


//
//  Complex cases
//

//
//  Matrix closure of form:  MA1*MA2^H
//
template <typename MA1, typename MA2>
using MatrixClosureRKC1_ =

    MatrixClosure<OpMult,
                  MA1,
                  MatrixClosureOpConjTrans<MA2>
                 >;

//
//  Matrix closure of form:  MB + MA1*MA2^H
//
template <typename MB, typename MA1, typename MA2>
using MatrixClosureRKC1 =

    MatrixClosure<OpAdd,
                  MB,
                  MatrixClosureRKC1_<MA1, MA2>
                 >;

//
//  Matrix closure of form:  MA1^H*MA2
//
template <typename MA1, typename MA2>
using MatrixClosureRKC2_ =

    MatrixClosure<OpMult,
                  MatrixClosureOpConjTrans<MA1>,
                  MA2
                 >;

//
//  Matrix closure of form:  MB + MA1^H*MA2
//
template <typename MB, typename MA1, typename MA2>
using MatrixClosureRKC2 =

    MatrixClosure<OpAdd,
                  MB,
                  MatrixClosureRKC2_<MA1, MA2>
                 >;

//
//  Matrix closure of form:  (SV*MA1^H)*MA2
//
template <typename SV, typename MA1, typename MA2>
using MatrixClosureRKC3_ =

    MatrixClosure<OpMult,
                  MatrixClosure<OpMult,
                                ScalarValue<SV>,
                                MatrixClosureOpConjTrans<MA1>
                               >,
                  MA2
                 >;

//
//  Matrix closure of form:  MB + (SV*MA1^H)*MA2
//
template <typename MB, typename SV, typename MA1, typename MA2>
using MatrixClosureRKC3 =

    MatrixClosure<OpAdd,
                  MB,
                  MatrixClosureRKC3_<SV, MA1, MA2>
                 >;



//-- SymmetricMatrix -----------------------------------------------------------

//
//  Case 1: trans==NoTrans
//

//
//  C += a*A*A^T
//
template <typename ALPHA, typename MA1, typename MA2, typename MC>
    typename RestrictTo<DefaultEval<MatrixClosureRKU1_<MA1, MA2> >::value
                     && IsMatrix<MA1>::value
                     && IsMatrix<MA2>::value
                     && IsSymmetricMatrix<MC>::value,
             void>::Type
    axpy(Transpose trans, const ALPHA &alpha,
         const MatrixClosureRKU1_<MA1, MA2> &aAAt,
         MC &C);

//
//  C = a*A*A^T
//
template <typename MA1, typename MA2, typename MC>
    typename RestrictTo<DefaultEval<MatrixClosureRKU1_<MA1, MA2> >::value
                     && IsMatrix<MA1>::value
                     && IsMatrix<MA2>::value
                     && IsSymmetricMatrix<MC>::value,
             void>::Type
    copy(Transpose trans,
         const MatrixClosureRKU1_<MA1, MA2> &aAAt,
         MC &C);

//
//  C = b*B + a*A*A^T
//
template <typename MB, typename MA1, typename MA2, typename MC>
    typename RestrictTo<DefaultEval<MatrixClosureRKU1<MB, MA1, MA2> >::value
                     && IsMatrix<MB>::value
                     && IsMatrix<MA1>::value
                     && IsMatrix<MA2>::value
                     && IsSymmetricMatrix<MC>::value,
             void>::Type
    copy(Transpose trans,
         const MatrixClosureRKU1<MB, MA1, MA2> &bB_aAAt,
         MC &C);

//
//  Case 2: trans==Trans, alpha==1
//

//
//  C += A^T*A
//
template <typename ALPHA, typename MA1, typename MA2, typename MC>
    typename RestrictTo<DefaultEval<MatrixClosureRKU2_<MA1, MA2> >::value
                     && IsMatrix<MA1>::value
                     && IsMatrix<MA2>::value
                     && IsSymmetricMatrix<MC>::value,
             void>::Type
    axpy(Transpose trans, const ALPHA &alpha,
         const MatrixClosureRKU2_<MA1, MA2> &AtA,
         MC &C);

//
//  C = A^T*A
//
template <typename MA1, typename MA2, typename MC>
    typename RestrictTo<DefaultEval<MatrixClosureRKU2_<MA1, MA2> >::value
                     && IsMatrix<MA1>::value
                     && IsMatrix<MA2>::value
                     && IsSymmetricMatrix<MC>::value,
             void>::Type
    copy(Transpose trans,
         const MatrixClosureRKU2_<MA1, MA2> &AtA,
         MC &C);

//
//  C = b*B + A^T*A
//
template <typename MB, typename MA1, typename MA2, typename MC>
    typename RestrictTo<DefaultEval<MatrixClosureRKU2<MB, MA1, MA2> >::value
                     && IsMatrix<MB>::value
                     && IsMatrix<MA1>::value
                     && IsMatrix<MA2>::value
                     && IsSymmetricMatrix<MC>::value,
             void>::Type
    copy(Transpose trans,
         const MatrixClosureRKU2<MB, MA1, MA2> &bB_AtA,
         MC &C);

//
//  Case 3: trans==Trans, alpha
//

//
//  C += a*A^T*A
//
template <typename ALPHA, typename SV, typename MA1, typename MA2, typename MC>
    typename RestrictTo<DefaultEval<MatrixClosureRKU3_<SV, MA1, MA2> >::value
                     && IsMatrix<MA1>::value
                     && IsMatrix<MA2>::value
                     && IsSymmetricMatrix<MC>::value,
             void>::Type
    axpy(Transpose trans, const ALPHA &alpha,
         const MatrixClosureRKU3_<SV, MA1, MA2> &aAtA,
         MC &C);

//
//  C = a*A^T*A
//
template <typename SV, typename MA1, typename MA2, typename MC>
    typename RestrictTo<DefaultEval<MatrixClosureRKU3_<SV, MA1, MA2> >::value
                     && IsMatrix<MA1>::value
                     && IsMatrix<MA2>::value
                     && IsSymmetricMatrix<MC>::value,
             void>::Type
    copy(Transpose trans,
         const MatrixClosureRKU3_<SV, MA1, MA2> &aAtA,
         MC &C);

//
//  C = b*B + a*A^T*A
//
template <typename MB, typename SV, typename MA1, typename MA2, typename MC>
    typename RestrictTo<DefaultEval<MatrixClosureRKU3<MB, SV, MA1, MA2> >::value
                     && IsMatrix<MB>::value
                     && IsMatrix<MA1>::value
                     && IsMatrix<MA2>::value
                     && IsSymmetricMatrix<MC>::value,
             void>::Type
    copy(Transpose trans,
         const MatrixClosureRKU3<MB, SV, MA1, MA2> &bB_AtA,
         MC &C);


//-- HermitianMatrix -----------------------------------------------------------

//
//  Case 1: trans==NoTrans
//

//
//  C += a*A*A^H
//
template <typename ALPHA, typename MA1, typename MA2, typename MC>
    typename RestrictTo<DefaultEval<MatrixClosureRKC1_<MA1, MA2> >::value
                     && IsMatrix<MA1>::value
                     && IsMatrix<MA2>::value
                     && IsHermitianMatrix<MC>::value,
             void>::Type
    axpy(Transpose trans, const ALPHA &alpha,
         const MatrixClosureRKC1_<MA1, MA2> &aAAh,
         MC &C);

//
//  C = a*A*A^H
//
template <typename MA1, typename MA2, typename MC>
    typename RestrictTo<DefaultEval<MatrixClosureRKC1_<MA1, MA2> >::value
                     && IsMatrix<MA1>::value
                     && IsMatrix<MA2>::value
                     && IsHermitianMatrix<MC>::value,
             void>::Type
    copy(Transpose trans,
         const MatrixClosureRKC1_<MA1, MA2> &aAAh,
         MC &C);

//
//  C = b*B + a*A*A^H
//
template <typename MB, typename MA1, typename MA2, typename MC>
    typename RestrictTo<DefaultEval<MatrixClosureRKC1<MB, MA1, MA2> >::value
                     && IsMatrix<MB>::value
                     && IsMatrix<MA1>::value
                     && IsMatrix<MA2>::value
                     && IsHermitianMatrix<MC>::value,
             void>::Type
    copy(Transpose trans,
         const MatrixClosureRKC1<MB, MA1, MA2> &bB_aAAh,
         MC &C);

//
//  Case 2: trans==Trans, alpha==1
//

//
//  C += A^H*A
//
template <typename ALPHA, typename MA1, typename MA2, typename MC>
    typename RestrictTo<DefaultEval<MatrixClosureRKC2_<MA1, MA2> >::value
                     && IsMatrix<MA1>::value
                     && IsMatrix<MA2>::value
                     && IsHermitianMatrix<MC>::value,
             void>::Type
    axpy(Transpose trans, const ALPHA &alpha,
         const MatrixClosureRKC2_<MA1, MA2> &AhA,
         MC &C);

//
//  C = A^H*A
//
template <typename MA1, typename MA2, typename MC>
    typename RestrictTo<DefaultEval<MatrixClosureRKC2_<MA1, MA2> >::value
                     && IsMatrix<MA1>::value
                     && IsMatrix<MA2>::value
                     && IsHermitianMatrix<MC>::value,
             void>::Type
    copy(Transpose trans,
         const MatrixClosureRKC2_<MA1, MA2> &AhA,
         MC &C);


//
//  C = b*B + A^H*A
//
template <typename MB, typename MA1, typename MA2, typename MC>
    typename RestrictTo<DefaultEval<MatrixClosureRKC2<MB, MA1, MA2> >::value
                     && IsMatrix<MB>::value
                     && IsMatrix<MA1>::value
                     && IsMatrix<MA2>::value
                     && IsHermitianMatrix<MC>::value,
             void>::Type
    copy(Transpose trans,
         const MatrixClosureRKC2<MB, MA1, MA2> &bB_AhA,
         MC &C);

//
//  Case 3: trans==Trans, alpha
//

//
//  C += a*A^H*A
//
template <typename ALPHA, typename SV, typename MA1, typename MA2, typename MC>
    typename RestrictTo<DefaultEval<MatrixClosureRKC3_<SV, MA1, MA2> >::value
                     && IsMatrix<MA1>::value
                     && IsMatrix<MA2>::value
                     && IsHermitianMatrix<MC>::value,
             void>::Type
    axpy(Transpose trans, const ALPHA &alpha,
         const MatrixClosureRKC3_<SV, MA1, MA2> &aAtA,
         MC &C);

//
//  C = a*A^H*A
//
template <typename SV, typename MA1, typename MA2, typename MC>
    typename RestrictTo<DefaultEval<MatrixClosureRKC3_<SV, MA1, MA2> >::value
                     && IsMatrix<MA1>::value
                     && IsMatrix<MA2>::value
                     && IsHermitianMatrix<MC>::value,
             void>::Type
    copy(Transpose trans,
         const MatrixClosureRKC3_<SV, MA1, MA2> &aAtA,
         MC &C);

//
//  C = b*B + a*A^H*A
//
template <typename MB, typename SV, typename MA1, typename MA2, typename MC>
    typename RestrictTo<DefaultEval<MatrixClosureRKC3<MB, SV, MA1, MA2> >::value
                     && IsMatrix<MB>::value
                     && IsMatrix<MA1>::value
                     && IsMatrix<MA2>::value
                     && IsHermitianMatrix<MC>::value,
             void>::Type
    copy(Transpose trans,
         const MatrixClosureRKC3<MB, SV, MA1, MA2> &bB_AtA,
         MC &C);


} } // namespace blas, flens

#endif // FLENS_BLAS_CLOSURES_TWEAKS_RK_H