#include <cxxstd/iostream.h>
#include <flens/flens.cxx> using namespace flens; using namespace std; int main() { typedef complex<double> Complex; const Complex I(0,1); GeMatrix<FullStorage<Complex> > A(3, 3); DenseVector<Array<Complex> > b(3); /// /// Setup the raw data. /// A = 2, I, 0, 0, 2, 1.+I, 0, 0, 3; b = 1, 2, 3; /// /// $H$ is a symmetric matrix view constructed from the upper triangular /// part of $A$. Note that $H$ only references data from $A$. /// auto H = A.upper().hermitian(); cout << "H = " << H << endl; cout << "b = " << b << endl; /// /// Computes the Cholesky factorization $H = L L^T$ where $L$ is upper /// triangular. Matrix $H$ (i.e. the lower triangular part of $A$) gets /// overwritten with $L^T$. /// int info = lapack::potrf(H); /// /// If `info` is not zero the factorization could not be computed as the matrix /// was singular. /// if (info!=0) { cerr << "H is singular" << endl; return info; } /// /// Compute $x = H^{-1}b$. Vector $b$ gets overwritten with the solution /// vector $x$. /// lapack::potrs(H, b); cout << "inv(H)*b = " << b << endl; return 0; } |