CHBMV
Purpose
CHBMV performs the matrix-vector operation
y := alpha*A*x + beta*y,
where alpha and beta are scalars, x and y are n element vectors and
A is an n by n hermitian band matrix, with k super-diagonals.
y := alpha*A*x + beta*y,
where alpha and beta are scalars, x and y are n element vectors and
A is an n by n hermitian band matrix, with k super-diagonals.
Arguments
UPLO |
CHARACTER*1.
On entry, UPLO specifies whether the upper or lower
triangular part of the band matrix A is being supplied as follows: UPLO = 'U' or 'u' The upper triangular part of A is being supplied. UPLO = 'L' or 'l' The lower triangular part of A is being supplied. Unchanged on exit. |
N |
INTEGER.
On entry, N specifies the order of the matrix A.
N must be at least zero. Unchanged on exit. |
K |
INTEGER.
On entry, K specifies the number of super-diagonals of the
matrix A. K must satisfy 0 .le. K. Unchanged on exit. |
ALPHA |
COMPLEX .
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit. |
A |
COMPLEX array of DIMENSION ( LDA, n ).
Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
by n part of the array A must contain the upper triangular band part of the hermitian matrix, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer the upper triangular part of a hermitian band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the hermitian matrix, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer the lower triangular part of a hermitian band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Note that the imaginary parts of the diagonal elements need not be set and are assumed to be zero. Unchanged on exit. |
LDA |
INTEGER.
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. |
X |
COMPLEX array of DIMENSION at least
( 1 + ( n - 1 )*abs( INCX ) ).
Before entry, the incremented array X must contain the vector x. Unchanged on exit. |
INCX |
INTEGER.
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero. Unchanged on exit. |
BETA |
COMPLEX .
On entry, BETA specifies the scalar beta.
Unchanged on exit. |
Y |
COMPLEX array of DIMENSION at least
( 1 + ( n - 1 )*abs( INCY ) ).
Before entry, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. |
INCY |
INTEGER.
On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero. Unchanged on exit. |
Further Details
Level 2 Blas routine.
The vector and matrix arguments are not referenced when N = 0, or M = 0
Jack Dongarra, Argonne National Lab.
Jeremy Du Croz, Nag Central Office.
Sven Hammarling, Nag Central Office.
Richard Hanson, Sandia National Labs.
The vector and matrix arguments are not referenced when N = 0, or M = 0
Jack Dongarra, Argonne National Lab.
Jeremy Du Croz, Nag Central Office.
Sven Hammarling, Nag Central Office.
Richard Hanson, Sandia National Labs.