DSYR2

Purpose

DSYR2  performs the symmetric rank 2 operation

   A := alpha*x*y**T + alpha*y*x**T + A,

where alpha is a scalar, x and y are n element vectors and A is an n
by n symmetric matrix.

Arguments

UPLO
CHARACTER*1.
On entry, UPLO specifies whether the upper or lower
triangular part of the array A is to be referenced as
follows:

   UPLO = 'U' or 'u'   Only the upper triangular part of A
                       is to be referenced.

   UPLO = 'L' or 'l'   Only the lower triangular part of A
                       is to be referenced.

Unchanged on exit.
N
INTEGER.
On entry, N specifies the order of the matrix A.
N must be at least zero.
Unchanged on exit.
ALPHA
DOUBLE PRECISION.
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.
X
DOUBLE PRECISION array of dimension at least
( 1 + ( n - 1 )*abs( INCX ) ).
Before entry, the incremented array X must contain the n
element vector x.
Unchanged on exit.
INCX
INTEGER.
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.
Unchanged on exit.
Y
DOUBLE PRECISION array of dimension at least
( 1 + ( n - 1 )*abs( INCY ) ).
Before entry, the incremented array Y must contain the n
element vector y.
Unchanged on exit.
INCY
INTEGER.
On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero.
Unchanged on exit.
A
DOUBLE PRECISION array of DIMENSION ( LDA, n ).
Before entry with  UPLO = 'U' or 'u', the leading n by n
upper triangular part of the array A must contain the upper
triangular part of the symmetric matrix and the strictly
lower triangular part of A is not referenced. On exit, the
upper triangular part of the array A is overwritten by the
upper triangular part of the updated matrix.
Before entry with UPLO = 'L' or 'l', the leading n by n
lower triangular part of the array A must contain the lower
triangular part of the symmetric matrix and the strictly
upper triangular part of A is not referenced. On exit, the
lower triangular part of the array A is overwritten by the
lower triangular part of the updated matrix.
LDA
INTEGER.
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. LDA must be at least
max( 1, n ).
Unchanged on exit.

Further Details

Level 2 Blas routine.

   Jack Dongarra, Argonne National Lab.
   Jeremy Du Croz, Nag Central Office.
   Sven Hammarling, Nag Central Office.
   Richard Hanson, Sandia National Labs.

Call Graph

Caller Graph