1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
SUBROUTINE DTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
* .. Scalar Arguments .. INTEGER INCX,K,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),X(*) * .. * * Purpose * ======= * * DTBSV solves one of the systems of equations * * A*x = b, or A**T*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular band matrix, with ( k + 1 ) * diagonals. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A**T*x = b. * * TRANS = 'C' or 'c' A**T*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with UPLO = 'U' or 'u', K specifies the number of * super-diagonals of the matrix A. * On entry with UPLO = 'L' or 'l', K specifies the number of * sub-diagonals of the matrix A. * K must satisfy 0 .le. K. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) * by n part of the array A must contain the upper triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row * ( k + 1 ) of the array, the first super-diagonal starting at * position 2 in row k, and so on. The top left k by k triangle * of the array A is not referenced. * The following program segment will transfer an upper * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = K + 1 - J * DO 10, I = MAX( 1, J - K ), J * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) * by n part of the array A must contain the lower triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row 1 of * the array, the first sub-diagonal starting at position 1 in * row 2, and so on. The bottom right k by k triangle of the * array A is not referenced. * The following program segment will transfer a lower * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = 1 - J * DO 10, I = J, MIN( N, J + K ) * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Note that when DIAG = 'U' or 'u' the elements of the array A * corresponding to the diagonal elements of the matrix are not * referenced, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * ( k + 1 ). * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER (ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L LOGICAL NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX,MIN * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (K.LT.0) THEN INFO = 5 ELSE IF (LDA.LT. (K+1)) THEN INFO = 7 ELSE IF (INCX.EQ.0) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('DTBSV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed by sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := inv( A )*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 20 J = N,1,-1 IF (X(J).NE.ZERO) THEN L = KPLUS1 - J IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J) TEMP = X(J) DO 10 I = J - 1,MAX(1,J-K),-1 X(I) = X(I) - TEMP*A(L+I,J) 10 CONTINUE END IF 20 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 40 J = N,1,-1 KX = KX - INCX IF (X(JX).NE.ZERO) THEN IX = KX L = KPLUS1 - J IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J) TEMP = X(JX) DO 30 I = J - 1,MAX(1,J-K),-1 X(IX) = X(IX) - TEMP*A(L+I,J) IX = IX - INCX 30 CONTINUE END IF JX = JX - INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN L = 1 - J IF (NOUNIT) X(J) = X(J)/A(1,J) TEMP = X(J) DO 50 I = J + 1,MIN(N,J+K) X(I) = X(I) - TEMP*A(L+I,J) 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N KX = KX + INCX IF (X(JX).NE.ZERO) THEN IX = KX L = 1 - J IF (NOUNIT) X(JX) = X(JX)/A(1,J) TEMP = X(JX) DO 70 I = J + 1,MIN(N,J+K) X(IX) = X(IX) - TEMP*A(L+I,J) IX = IX + INCX 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF ELSE * * Form x := inv( A**T)*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 100 J = 1,N TEMP = X(J) L = KPLUS1 - J DO 90 I = MAX(1,J-K),J - 1 TEMP = TEMP - A(L+I,J)*X(I) 90 CONTINUE IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) X(J) = TEMP 100 CONTINUE ELSE JX = KX DO 120 J = 1,N TEMP = X(JX) IX = KX L = KPLUS1 - J DO 110 I = MAX(1,J-K),J - 1 TEMP = TEMP - A(L+I,J)*X(IX) IX = IX + INCX 110 CONTINUE IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) X(JX) = TEMP JX = JX + INCX IF (J.GT.K) KX = KX + INCX 120 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 140 J = N,1,-1 TEMP = X(J) L = 1 - J DO 130 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - A(L+I,J)*X(I) 130 CONTINUE IF (NOUNIT) TEMP = TEMP/A(1,J) X(J) = TEMP 140 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 160 J = N,1,-1 TEMP = X(JX) IX = KX L = 1 - J DO 150 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - A(L+I,J)*X(IX) IX = IX - INCX 150 CONTINUE IF (NOUNIT) TEMP = TEMP/A(1,J) X(JX) = TEMP JX = JX - INCX IF ((N-J).GE.K) KX = KX - INCX 160 CONTINUE END IF END IF END IF * RETURN * * End of DTBSV . * END |