CPOTRF
   Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
March 2008
March 2008
Purpose
CPOTRF computes the Cholesky factorization of a real symmetric
positive definite matrix A.
The factorization has the form
A = U**H * U, if UPLO = 'U', or
A = L * L**H, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
This is the top-looking block version of the algorithm, calling Level 3 BLAS.
positive definite matrix A.
The factorization has the form
A = U**H * U, if UPLO = 'U', or
A = L * L**H, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
This is the top-looking block version of the algorithm, calling Level 3 BLAS.
Arguments
| UPLO | 
 
(input) CHARACTER*1
 
= 'U':  Upper triangle of A is stored; 
= 'L': Lower triangle of A is stored.  | 
| N | 
 
(input) INTEGER
 
The order of the matrix A.  N >= 0. 
 | 
| A | 
 
(input/output) COMPLEX array, dimension (LDA,N)
 
On entry, the symmetric matrix A.  If UPLO = 'U', the leading 
N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H.  | 
| LDA | 
 
(input) INTEGER
 
The leading dimension of the array A.  LDA >= max(1,N). 
 | 
| INFO | 
 
(output) INTEGER
 
= 0:  successful exit 
< 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the leading minor of order i is not positive definite, and the factorization could not be completed.  |