1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
SUBROUTINE SGETRF ( M, N, A, LDA, IPIV, INFO)
* * -- LAPACK routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * March 2008 * * .. Scalar Arguments .. INTEGER INFO, LDA, M, N * .. * .. Array Arguments .. INTEGER IPIV( * ) REAL A( LDA, * ) * .. * * Purpose * ======= * * SGETRF computes an LU factorization of a general M-by-N matrix A * using partial pivoting with row interchanges. * * The factorization has the form * A = P * L * U * where P is a permutation matrix, L is lower triangular with unit * diagonal elements (lower trapezoidal if m > n), and U is upper * triangular (upper trapezoidal if m < n). * * This is the left-looking Level 3 BLAS version of the algorithm. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * A (input/output) REAL array, dimension (LDA,N) * On entry, the M-by-N matrix to be factored. * On exit, the factors L and U from the factorization * A = P*L*U; the unit diagonal elements of L are not stored. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * IPIV (output) INTEGER array, dimension (min(M,N)) * The pivot indices; for 1 <= i <= min(M,N), row i of the * matrix was interchanged with row IPIV(i). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, U(i,i) is exactly zero. The factorization * has been completed, but the factor U is exactly * singular, and division by zero will occur if it is used * to solve a system of equations. * * ===================================================================== * * .. Parameters .. REAL ONE PARAMETER ( ONE = 1.0E+0 ) * .. * .. Local Scalars .. INTEGER I, IINFO, J, JB, K, NB * .. * .. External Subroutines .. EXTERNAL SGEMM, SGETF2, SLASWP, STRSM, XERBLA * .. * .. External Functions .. INTEGER ILAENV EXTERNAL ILAENV * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGETRF', -INFO ) RETURN END IF * * Quick return if possible * IF( M.EQ.0 .OR. N.EQ.0 ) $ RETURN * * Determine the block size for this environment. * NB = ILAENV( 1, 'SGETRF', ' ', M, N, -1, -1 ) IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN * * Use unblocked code. * CALL SGETF2( M, N, A, LDA, IPIV, INFO ) ELSE * * Use blocked code. * DO 20 J = 1, MIN( M, N ), NB JB = MIN( MIN( M, N )-J+1, NB ) * * * Update before factoring the current panel * DO 30 K = 1, J-NB, NB * * Apply interchanges to rows K:K+NB-1. * CALL SLASWP( JB, A(1, J), LDA, K, K+NB-1, IPIV, 1 ) * * Compute block row of U. * CALL STRSM( 'Left', 'Lower', 'No transpose', 'Unit', $ NB, JB, ONE, A( K, K ), LDA, $ A( K, J ), LDA ) * * Update trailing submatrix. * CALL SGEMM( 'No transpose', 'No transpose', $ M-K-NB+1, JB, NB, -ONE, $ A( K+NB, K ), LDA, A( K, J ), LDA, ONE, $ A( K+NB, J ), LDA ) 30 CONTINUE * * Factor diagonal and subdiagonal blocks and test for exact * singularity. * CALL SGETF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO ) * * Adjust INFO and the pivot indices. * IF( INFO.EQ.0 .AND. IINFO.GT.0 ) $ INFO = IINFO + J - 1 DO 10 I = J, MIN( M, J+JB-1 ) IPIV( I ) = J - 1 + IPIV( I ) 10 CONTINUE * 20 CONTINUE * * Apply interchanges to the left-overs * DO 40 K = 1, MIN( M, N ), NB CALL SLASWP( K-1, A( 1, 1 ), LDA, K, $ MIN (K+NB-1, MIN ( M, N )), IPIV, 1 ) 40 CONTINUE * * Apply update to the M+1:N columns when N > M * IF ( N.GT.M ) THEN CALL SLASWP( N-M, A(1, M+1), LDA, 1, M, IPIV, 1 ) DO 50 K = 1, M, NB JB = MIN( M-K+1, NB ) * CALL STRSM( 'Left', 'Lower', 'No transpose', 'Unit', $ JB, N-M, ONE, A( K, K ), LDA, $ A( K, M+1 ), LDA ) * IF ( K+NB.LE.M ) THEN CALL SGEMM( 'No transpose', 'No transpose', $ M-K-NB+1, N-M, NB, -ONE, $ A( K+NB, K ), LDA, A( K, M+1 ), LDA, ONE, $ A( K+NB, M+1 ), LDA ) END IF 50 CONTINUE END IF * END IF RETURN * * End of SGETRF * END |