ZGETRF
   Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
March 2008
March 2008
Purpose
ZGETRF computes an LU factorization of a general M-by-N matrix A
using partial pivoting with row interchanges.
The factorization has the form
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).
This is the left-looking Level 3 BLAS version of the algorithm.
using partial pivoting with row interchanges.
The factorization has the form
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).
This is the left-looking Level 3 BLAS version of the algorithm.
Arguments
| M | 
 
(input) INTEGER
 
The number of rows of the matrix A.  M >= 0. 
 | 
| N | 
 
(input) INTEGER
 
The number of columns of the matrix A.  N >= 0. 
 | 
| A | 
 
(input/output) COMPLEX*16 array, dimension (LDA,N)
 
On entry, the M-by-N matrix to be factored. 
On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored.  | 
| LDA | 
 
(input) INTEGER
 
The leading dimension of the array A.  LDA >= max(1,M). 
 | 
| IPIV | 
 
(output) INTEGER array, dimension (min(M,N))
 
The pivot indices; for 1 <= i <= min(M,N), row i of the 
matrix was interchanged with row IPIV(i).  | 
| INFO | 
 
(output) INTEGER
 
= 0:  successful exit 
< 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.  |