1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
SUBROUTINE CGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND,
$ WORK, RWORK, INFO ) * * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH. * * .. Scalar Arguments .. CHARACTER NORM INTEGER INFO, KL, KU, LDAB, N REAL ANORM, RCOND * .. * .. Array Arguments .. INTEGER IPIV( * ) REAL RWORK( * ) COMPLEX AB( LDAB, * ), WORK( * ) * .. * * Purpose * ======= * * CGBCON estimates the reciprocal of the condition number of a complex * general band matrix A, in either the 1-norm or the infinity-norm, * using the LU factorization computed by CGBTRF. * * An estimate is obtained for norm(inv(A)), and the reciprocal of the * condition number is computed as * RCOND = 1 / ( norm(A) * norm(inv(A)) ). * * Arguments * ========= * * NORM (input) CHARACTER*1 * Specifies whether the 1-norm condition number or the * infinity-norm condition number is required: * = '1' or 'O': 1-norm; * = 'I': Infinity-norm. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * KL (input) INTEGER * The number of subdiagonals within the band of A. KL >= 0. * * KU (input) INTEGER * The number of superdiagonals within the band of A. KU >= 0. * * AB (input) COMPLEX array, dimension (LDAB,N) * Details of the LU factorization of the band matrix A, as * computed by CGBTRF. U is stored as an upper triangular band * matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and * the multipliers used during the factorization are stored in * rows KL+KU+2 to 2*KL+KU+1. * * LDAB (input) INTEGER * The leading dimension of the array AB. LDAB >= 2*KL+KU+1. * * IPIV (input) INTEGER array, dimension (N) * The pivot indices; for 1 <= i <= N, row i of the matrix was * interchanged with row IPIV(i). * * ANORM (input) REAL * If NORM = '1' or 'O', the 1-norm of the original matrix A. * If NORM = 'I', the infinity-norm of the original matrix A. * * RCOND (output) REAL * The reciprocal of the condition number of the matrix A, * computed as RCOND = 1/(norm(A) * norm(inv(A))). * * WORK (workspace) COMPLEX array, dimension (2*N) * * RWORK (workspace) REAL array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. LOGICAL LNOTI, ONENRM CHARACTER NORMIN INTEGER IX, J, JP, KASE, KASE1, KD, LM REAL AINVNM, SCALE, SMLNUM COMPLEX T, ZDUM * .. * .. Local Arrays .. INTEGER ISAVE( 3 ) * .. * .. External Functions .. LOGICAL LSAME INTEGER ICAMAX REAL SLAMCH COMPLEX CDOTC EXTERNAL LSAME, ICAMAX, SLAMCH, CDOTC * .. * .. External Subroutines .. EXTERNAL CAXPY, CLACN2, CLATBS, CSRSCL, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, MIN, REAL * .. * .. Statement Functions .. REAL CABS1 * .. * .. Statement Function definitions .. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) ) * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' ) IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( KL.LT.0 ) THEN INFO = -3 ELSE IF( KU.LT.0 ) THEN INFO = -4 ELSE IF( LDAB.LT.2*KL+KU+1 ) THEN INFO = -6 ELSE IF( ANORM.LT.ZERO ) THEN INFO = -8 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CGBCON', -INFO ) RETURN END IF * * Quick return if possible * RCOND = ZERO IF( N.EQ.0 ) THEN RCOND = ONE RETURN ELSE IF( ANORM.EQ.ZERO ) THEN RETURN END IF * SMLNUM = SLAMCH( 'Safe minimum' ) * * Estimate the norm of inv(A). * AINVNM = ZERO NORMIN = 'N' IF( ONENRM ) THEN KASE1 = 1 ELSE KASE1 = 2 END IF KD = KL + KU + 1 LNOTI = KL.GT.0 KASE = 0 10 CONTINUE CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE ) IF( KASE.NE.0 ) THEN IF( KASE.EQ.KASE1 ) THEN * * Multiply by inv(L). * IF( LNOTI ) THEN DO 20 J = 1, N - 1 LM = MIN( KL, N-J ) JP = IPIV( J ) T = WORK( JP ) IF( JP.NE.J ) THEN WORK( JP ) = WORK( J ) WORK( J ) = T END IF CALL CAXPY( LM, -T, AB( KD+1, J ), 1, WORK( J+1 ), 1 ) 20 CONTINUE END IF * * Multiply by inv(U). * CALL CLATBS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N, $ KL+KU, AB, LDAB, WORK, SCALE, RWORK, INFO ) ELSE * * Multiply by inv(U**H). * CALL CLATBS( 'Upper', 'Conjugate transpose', 'Non-unit', $ NORMIN, N, KL+KU, AB, LDAB, WORK, SCALE, RWORK, $ INFO ) * * Multiply by inv(L**H). * IF( LNOTI ) THEN DO 30 J = N - 1, 1, -1 LM = MIN( KL, N-J ) WORK( J ) = WORK( J ) - CDOTC( LM, AB( KD+1, J ), 1, $ WORK( J+1 ), 1 ) JP = IPIV( J ) IF( JP.NE.J ) THEN T = WORK( JP ) WORK( JP ) = WORK( J ) WORK( J ) = T END IF 30 CONTINUE END IF END IF * * Divide X by 1/SCALE if doing so will not cause overflow. * NORMIN = 'Y' IF( SCALE.NE.ONE ) THEN IX = ICAMAX( N, WORK, 1 ) IF( SCALE.LT.CABS1( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO ) $ GO TO 40 CALL CSRSCL( N, SCALE, WORK, 1 ) END IF GO TO 10 END IF * * Compute the estimate of the reciprocal condition number. * IF( AINVNM.NE.ZERO ) $ RCOND = ( ONE / AINVNM ) / ANORM * 40 CONTINUE RETURN * * End of CGBCON * END |