1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
SUBROUTINE CGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO )
* * -- LAPACK routine (version 3.2.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * June 2010 * * .. Scalar Arguments .. CHARACTER JOB INTEGER IHI, ILO, INFO, LDA, N * .. * .. Array Arguments .. REAL SCALE( * ) COMPLEX A( LDA, * ) * .. * * Purpose * ======= * * CGEBAL balances a general complex matrix A. This involves, first, * permuting A by a similarity transformation to isolate eigenvalues * in the first 1 to ILO-1 and last IHI+1 to N elements on the * diagonal; and second, applying a diagonal similarity transformation * to rows and columns ILO to IHI to make the rows and columns as * close in norm as possible. Both steps are optional. * * Balancing may reduce the 1-norm of the matrix, and improve the * accuracy of the computed eigenvalues and/or eigenvectors. * * Arguments * ========= * * JOB (input) CHARACTER*1 * Specifies the operations to be performed on A: * = 'N': none: simply set ILO = 1, IHI = N, SCALE(I) = 1.0 * for i = 1,...,N; * = 'P': permute only; * = 'S': scale only; * = 'B': both permute and scale. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input/output) COMPLEX array, dimension (LDA,N) * On entry, the input matrix A. * On exit, A is overwritten by the balanced matrix. * If JOB = 'N', A is not referenced. * See Further Details. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * ILO (output) INTEGER * IHI (output) INTEGER * ILO and IHI are set to integers such that on exit * A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N. * If JOB = 'N' or 'S', ILO = 1 and IHI = N. * * SCALE (output) REAL array, dimension (N) * Details of the permutations and scaling factors applied to * A. If P(j) is the index of the row and column interchanged * with row and column j and D(j) is the scaling factor * applied to row and column j, then * SCALE(j) = P(j) for j = 1,...,ILO-1 * = D(j) for j = ILO,...,IHI * = P(j) for j = IHI+1,...,N. * The order in which the interchanges are made is N to IHI+1, * then 1 to ILO-1. * * INFO (output) INTEGER * = 0: successful exit. * < 0: if INFO = -i, the i-th argument had an illegal value. * * Further Details * =============== * * The permutations consist of row and column interchanges which put * the matrix in the form * * ( T1 X Y ) * P A P = ( 0 B Z ) * ( 0 0 T2 ) * * where T1 and T2 are upper triangular matrices whose eigenvalues lie * along the diagonal. The column indices ILO and IHI mark the starting * and ending columns of the submatrix B. Balancing consists of applying * a diagonal similarity transformation inv(D) * B * D to make the * 1-norms of each row of B and its corresponding column nearly equal. * The output matrix is * * ( T1 X*D Y ) * ( 0 inv(D)*B*D inv(D)*Z ). * ( 0 0 T2 ) * * Information about the permutations P and the diagonal matrix D is * returned in the vector SCALE. * * This subroutine is based on the EISPACK routine CBAL. * * Modified by Tzu-Yi Chen, Computer Science Division, University of * California at Berkeley, USA * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) REAL SCLFAC PARAMETER ( SCLFAC = 2.0E+0 ) REAL FACTOR PARAMETER ( FACTOR = 0.95E+0 ) * .. * .. Local Scalars .. LOGICAL NOCONV INTEGER I, ICA, IEXC, IRA, J, K, L, M REAL C, CA, F, G, R, RA, S, SFMAX1, SFMAX2, SFMIN1, $ SFMIN2 COMPLEX CDUM * .. * .. External Functions .. LOGICAL SISNAN, LSAME INTEGER ICAMAX REAL SLAMCH EXTERNAL SISNAN, LSAME, ICAMAX, SLAMCH * .. * .. External Subroutines .. EXTERNAL CSSCAL, CSWAP, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, MAX, MIN, REAL * .. * .. Statement Functions .. REAL CABS1 * .. * .. Statement Function definitions .. CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) ) * .. * .. Executable Statements .. * * Test the input parameters * INFO = 0 IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND. $ .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CGEBAL', -INFO ) RETURN END IF * K = 1 L = N * IF( N.EQ.0 ) $ GO TO 210 * IF( LSAME( JOB, 'N' ) ) THEN DO 10 I = 1, N SCALE( I ) = ONE 10 CONTINUE GO TO 210 END IF * IF( LSAME( JOB, 'S' ) ) $ GO TO 120 * * Permutation to isolate eigenvalues if possible * GO TO 50 * * Row and column exchange. * 20 CONTINUE SCALE( M ) = J IF( J.EQ.M ) $ GO TO 30 * CALL CSWAP( L, A( 1, J ), 1, A( 1, M ), 1 ) CALL CSWAP( N-K+1, A( J, K ), LDA, A( M, K ), LDA ) * 30 CONTINUE GO TO ( 40, 80 )IEXC * * Search for rows isolating an eigenvalue and push them down. * 40 CONTINUE IF( L.EQ.1 ) $ GO TO 210 L = L - 1 * 50 CONTINUE DO 70 J = L, 1, -1 * DO 60 I = 1, L IF( I.EQ.J ) $ GO TO 60 IF( REAL( A( J, I ) ).NE.ZERO .OR. AIMAG( A( J, I ) ).NE. $ ZERO )GO TO 70 60 CONTINUE * M = L IEXC = 1 GO TO 20 70 CONTINUE * GO TO 90 * * Search for columns isolating an eigenvalue and push them left. * 80 CONTINUE K = K + 1 * 90 CONTINUE DO 110 J = K, L * DO 100 I = K, L IF( I.EQ.J ) $ GO TO 100 IF( REAL( A( I, J ) ).NE.ZERO .OR. AIMAG( A( I, J ) ).NE. $ ZERO )GO TO 110 100 CONTINUE * M = K IEXC = 2 GO TO 20 110 CONTINUE * 120 CONTINUE DO 130 I = K, L SCALE( I ) = ONE 130 CONTINUE * IF( LSAME( JOB, 'P' ) ) $ GO TO 210 * * Balance the submatrix in rows K to L. * * Iterative loop for norm reduction * SFMIN1 = SLAMCH( 'S' ) / SLAMCH( 'P' ) SFMAX1 = ONE / SFMIN1 SFMIN2 = SFMIN1*SCLFAC SFMAX2 = ONE / SFMIN2 140 CONTINUE NOCONV = .FALSE. * DO 200 I = K, L C = ZERO R = ZERO * DO 150 J = K, L IF( J.EQ.I ) $ GO TO 150 C = C + CABS1( A( J, I ) ) R = R + CABS1( A( I, J ) ) 150 CONTINUE ICA = ICAMAX( L, A( 1, I ), 1 ) CA = ABS( A( ICA, I ) ) IRA = ICAMAX( N-K+1, A( I, K ), LDA ) RA = ABS( A( I, IRA+K-1 ) ) * * Guard against zero C or R due to underflow. * IF( C.EQ.ZERO .OR. R.EQ.ZERO ) $ GO TO 200 G = R / SCLFAC F = ONE S = C + R 160 CONTINUE IF( C.GE.G .OR. MAX( F, C, CA ).GE.SFMAX2 .OR. $ MIN( R, G, RA ).LE.SFMIN2 )GO TO 170 IF( SISNAN( C+F+CA+R+G+RA ) ) THEN * * Exit if NaN to avoid infinite loop * INFO = -3 CALL XERBLA( 'CGEBAL', -INFO ) RETURN END IF F = F*SCLFAC C = C*SCLFAC CA = CA*SCLFAC R = R / SCLFAC G = G / SCLFAC RA = RA / SCLFAC GO TO 160 * 170 CONTINUE G = C / SCLFAC 180 CONTINUE IF( G.LT.R .OR. MAX( R, RA ).GE.SFMAX2 .OR. $ MIN( F, C, G, CA ).LE.SFMIN2 )GO TO 190 F = F / SCLFAC C = C / SCLFAC G = G / SCLFAC CA = CA / SCLFAC R = R*SCLFAC RA = RA*SCLFAC GO TO 180 * * Now balance. * 190 CONTINUE IF( ( C+R ).GE.FACTOR*S ) $ GO TO 200 IF( F.LT.ONE .AND. SCALE( I ).LT.ONE ) THEN IF( F*SCALE( I ).LE.SFMIN1 ) $ GO TO 200 END IF IF( F.GT.ONE .AND. SCALE( I ).GT.ONE ) THEN IF( SCALE( I ).GE.SFMAX1 / F ) $ GO TO 200 END IF G = ONE / F SCALE( I ) = SCALE( I )*F NOCONV = .TRUE. * CALL CSSCAL( N-K+1, G, A( I, K ), LDA ) CALL CSSCAL( L, F, A( 1, I ), 1 ) * 200 CONTINUE * IF( NOCONV ) $ GO TO 140 * 210 CONTINUE ILO = K IHI = L * RETURN * * End of CGEBAL * END |