CGELQ2
Purpose
CGELQ2 computes an LQ factorization of a complex m by n matrix A:
A = L * Q.
A = L * Q.
Arguments
| M | 
(input) INTEGER
 
The number of rows of the matrix A.  M >= 0. | 
| N | 
(input) INTEGER
 
The number of columns of the matrix A.  N >= 0. | 
| A | 
(input/output) COMPLEX array, dimension (LDA,N)
 
On entry, the m by n matrix A. On exit, the elements on and below the diagonal of the array contain the m by min(m,n) lower trapezoidal matrix L (L is lower triangular if m <= n); the elements above the diagonal, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors (see Further Details). | 
| LDA | 
(input) INTEGER
 
The leading dimension of the array A.  LDA >= max(1,M). | 
| TAU | 
(output) COMPLEX array, dimension (min(M,N))
 
The scalar factors of the elementary reflectors (see Further Details). | 
| WORK | 
(workspace) COMPLEX array, dimension (M)
 | 
| INFO | 
(output) INTEGER
 
= 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value | 
Further Details
The matrix Q is represented as a product of elementary reflectors
Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**H
where tau is a complex scalar, and v is a complex vector with
v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
A(i,i+1:n), and tau in TAU(i).
Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**H
where tau is a complex scalar, and v is a complex vector with
v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
A(i,i+1:n), and tau in TAU(i).