1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
SUBROUTINE CGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
$ WORK, LWORK, RWORK, INFO ) * * -- LAPACK driver routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK REAL RCOND * .. * .. Array Arguments .. INTEGER JPVT( * ) REAL RWORK( * ) COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ) * .. * * Purpose * ======= * * CGELSY computes the minimum-norm solution to a complex linear least * squares problem: * minimize || A * X - B || * using a complete orthogonal factorization of A. A is an M-by-N * matrix which may be rank-deficient. * * Several right hand side vectors b and solution vectors x can be * handled in a single call; they are stored as the columns of the * M-by-NRHS right hand side matrix B and the N-by-NRHS solution * matrix X. * * The routine first computes a QR factorization with column pivoting: * A * P = Q * [ R11 R12 ] * [ 0 R22 ] * with R11 defined as the largest leading submatrix whose estimated * condition number is less than 1/RCOND. The order of R11, RANK, * is the effective rank of A. * * Then, R22 is considered to be negligible, and R12 is annihilated * by unitary transformations from the right, arriving at the * complete orthogonal factorization: * A * P = Q * [ T11 0 ] * Z * [ 0 0 ] * The minimum-norm solution is then * X = P * Z**H [ inv(T11)*Q1**H*B ] * [ 0 ] * where Q1 consists of the first RANK columns of Q. * * This routine is basically identical to the original xGELSX except * three differences: * o The permutation of matrix B (the right hand side) is faster and * more simple. * o The call to the subroutine xGEQPF has been substituted by the * the call to the subroutine xGEQP3. This subroutine is a Blas-3 * version of the QR factorization with column pivoting. * o Matrix B (the right hand side) is updated with Blas-3. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of * columns of matrices B and X. NRHS >= 0. * * A (input/output) COMPLEX array, dimension (LDA,N) * On entry, the M-by-N matrix A. * On exit, A has been overwritten by details of its * complete orthogonal factorization. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * B (input/output) COMPLEX array, dimension (LDB,NRHS) * On entry, the M-by-NRHS right hand side matrix B. * On exit, the N-by-NRHS solution matrix X. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,M,N). * * JPVT (input/output) INTEGER array, dimension (N) * On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted * to the front of AP, otherwise column i is a free column. * On exit, if JPVT(i) = k, then the i-th column of A*P * was the k-th column of A. * * RCOND (input) REAL * RCOND is used to determine the effective rank of A, which * is defined as the order of the largest leading triangular * submatrix R11 in the QR factorization with pivoting of A, * whose estimated condition number < 1/RCOND. * * RANK (output) INTEGER * The effective rank of A, i.e., the order of the submatrix * R11. This is the same as the order of the submatrix T11 * in the complete orthogonal factorization of A. * * WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. * The unblocked strategy requires that: * LWORK >= MN + MAX( 2*MN, N+1, MN+NRHS ) * where MN = min(M,N). * The block algorithm requires that: * LWORK >= MN + MAX( 2*MN, NB*(N+1), MN+MN*NB, MN+NB*NRHS ) * where NB is an upper bound on the blocksize returned * by ILAENV for the routines CGEQP3, CTZRZF, CTZRQF, CUNMQR, * and CUNMRZ. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * RWORK (workspace) REAL array, dimension (2*N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * Further Details * =============== * * Based on contributions by * A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA * E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain * G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain * * ===================================================================== * * .. Parameters .. INTEGER IMAX, IMIN PARAMETER ( IMAX = 1, IMIN = 2 ) REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. LOGICAL LQUERY INTEGER I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKOPT, MN, $ NB, NB1, NB2, NB3, NB4 REAL ANRM, BIGNUM, BNRM, SMAX, SMAXPR, SMIN, SMINPR, $ SMLNUM, WSIZE COMPLEX C1, C2, S1, S2 * .. * .. External Subroutines .. EXTERNAL CCOPY, CGEQP3, CLAIC1, CLASCL, CLASET, CTRSM, $ CTZRZF, CUNMQR, CUNMRZ, SLABAD, XERBLA * .. * .. External Functions .. INTEGER ILAENV REAL CLANGE, SLAMCH EXTERNAL CLANGE, ILAENV, SLAMCH * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, REAL, CMPLX * .. * .. Executable Statements .. * MN = MIN( M, N ) ISMIN = MN + 1 ISMAX = 2*MN + 1 * * Test the input arguments. * INFO = 0 NB1 = ILAENV( 1, 'CGEQRF', ' ', M, N, -1, -1 ) NB2 = ILAENV( 1, 'CGERQF', ' ', M, N, -1, -1 ) NB3 = ILAENV( 1, 'CUNMQR', ' ', M, N, NRHS, -1 ) NB4 = ILAENV( 1, 'CUNMRQ', ' ', M, N, NRHS, -1 ) NB = MAX( NB1, NB2, NB3, NB4 ) LWKOPT = MAX( 1, MN+2*N+NB*(N+1), 2*MN+NB*NRHS ) WORK( 1 ) = CMPLX( LWKOPT ) LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( NRHS.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN INFO = -7 ELSE IF( LWORK.LT.( MN+MAX( 2*MN, N+1, MN+NRHS ) ) .AND. $ .NOT.LQUERY ) THEN INFO = -12 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CGELSY', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( MIN( M, N, NRHS ).EQ.0 ) THEN RANK = 0 RETURN END IF * * Get machine parameters * SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' ) BIGNUM = ONE / SMLNUM CALL SLABAD( SMLNUM, BIGNUM ) * * Scale A, B if max entries outside range [SMLNUM,BIGNUM] * ANRM = CLANGE( 'M', M, N, A, LDA, RWORK ) IASCL = 0 IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN * * Scale matrix norm up to SMLNUM * CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO ) IASCL = 1 ELSE IF( ANRM.GT.BIGNUM ) THEN * * Scale matrix norm down to BIGNUM * CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO ) IASCL = 2 ELSE IF( ANRM.EQ.ZERO ) THEN * * Matrix all zero. Return zero solution. * CALL CLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB ) RANK = 0 GO TO 70 END IF * BNRM = CLANGE( 'M', M, NRHS, B, LDB, RWORK ) IBSCL = 0 IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN * * Scale matrix norm up to SMLNUM * CALL CLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO ) IBSCL = 1 ELSE IF( BNRM.GT.BIGNUM ) THEN * * Scale matrix norm down to BIGNUM * CALL CLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO ) IBSCL = 2 END IF * * Compute QR factorization with column pivoting of A: * A * P = Q * R * CALL CGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), $ LWORK-MN, RWORK, INFO ) WSIZE = MN + REAL( WORK( MN+1 ) ) * * complex workspace: MN+NB*(N+1). real workspace 2*N. * Details of Householder rotations stored in WORK(1:MN). * * Determine RANK using incremental condition estimation * WORK( ISMIN ) = CONE WORK( ISMAX ) = CONE SMAX = ABS( A( 1, 1 ) ) SMIN = SMAX IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN RANK = 0 CALL CLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB ) GO TO 70 ELSE RANK = 1 END IF * 10 CONTINUE IF( RANK.LT.MN ) THEN I = RANK + 1 CALL CLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ), $ A( I, I ), SMINPR, S1, C1 ) CALL CLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ), $ A( I, I ), SMAXPR, S2, C2 ) * IF( SMAXPR*RCOND.LE.SMINPR ) THEN DO 20 I = 1, RANK WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 ) WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 ) 20 CONTINUE WORK( ISMIN+RANK ) = C1 WORK( ISMAX+RANK ) = C2 SMIN = SMINPR SMAX = SMAXPR RANK = RANK + 1 GO TO 10 END IF END IF * * complex workspace: 3*MN. * * Logically partition R = [ R11 R12 ] * [ 0 R22 ] * where R11 = R(1:RANK,1:RANK) * * [R11,R12] = [ T11, 0 ] * Y * IF( RANK.LT.N ) $ CALL CTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ), $ LWORK-2*MN, INFO ) * * complex workspace: 2*MN. * Details of Householder rotations stored in WORK(MN+1:2*MN) * * B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS) * CALL CUNMQR( 'Left', 'Conjugate transpose', M, NRHS, MN, A, LDA, $ WORK( 1 ), B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO ) WSIZE = MAX( WSIZE, 2*MN+REAL( WORK( 2*MN+1 ) ) ) * * complex workspace: 2*MN+NB*NRHS. * * B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) * CALL CTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK, $ NRHS, CONE, A, LDA, B, LDB ) * DO 40 J = 1, NRHS DO 30 I = RANK + 1, N B( I, J ) = CZERO 30 CONTINUE 40 CONTINUE * * B(1:N,1:NRHS) := Y**H * B(1:N,1:NRHS) * IF( RANK.LT.N ) THEN CALL CUNMRZ( 'Left', 'Conjugate transpose', N, NRHS, RANK, $ N-RANK, A, LDA, WORK( MN+1 ), B, LDB, $ WORK( 2*MN+1 ), LWORK-2*MN, INFO ) END IF * * complex workspace: 2*MN+NRHS. * * B(1:N,1:NRHS) := P * B(1:N,1:NRHS) * DO 60 J = 1, NRHS DO 50 I = 1, N WORK( JPVT( I ) ) = B( I, J ) 50 CONTINUE CALL CCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 ) 60 CONTINUE * * complex workspace: N. * * Undo scaling * IF( IASCL.EQ.1 ) THEN CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO ) CALL CLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA, $ INFO ) ELSE IF( IASCL.EQ.2 ) THEN CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO ) CALL CLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA, $ INFO ) END IF IF( IBSCL.EQ.1 ) THEN CALL CLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO ) ELSE IF( IBSCL.EQ.2 ) THEN CALL CLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO ) END IF * 70 CONTINUE WORK( 1 ) = CMPLX( LWKOPT ) * RETURN * * End of CGELSY * END |