1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
SUBROUTINE CGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK,
$ INFO ) * * -- LAPACK driver routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. INTEGER INFO, LDA, LDB, LWORK, M, N, P * .. * .. Array Arguments .. COMPLEX A( LDA, * ), B( LDB, * ), D( * ), WORK( * ), $ X( * ), Y( * ) * .. * * Purpose * ======= * * CGGGLM solves a general Gauss-Markov linear model (GLM) problem: * * minimize || y ||_2 subject to d = A*x + B*y * x * * where A is an N-by-M matrix, B is an N-by-P matrix, and d is a * given N-vector. It is assumed that M <= N <= M+P, and * * rank(A) = M and rank( A B ) = N. * * Under these assumptions, the constrained equation is always * consistent, and there is a unique solution x and a minimal 2-norm * solution y, which is obtained using a generalized QR factorization * of the matrices (A, B) given by * * A = Q*(R), B = Q*T*Z. * (0) * * In particular, if matrix B is square nonsingular, then the problem * GLM is equivalent to the following weighted linear least squares * problem * * minimize || inv(B)*(d-A*x) ||_2 * x * * where inv(B) denotes the inverse of B. * * Arguments * ========= * * N (input) INTEGER * The number of rows of the matrices A and B. N >= 0. * * M (input) INTEGER * The number of columns of the matrix A. 0 <= M <= N. * * P (input) INTEGER * The number of columns of the matrix B. P >= N-M. * * A (input/output) COMPLEX array, dimension (LDA,M) * On entry, the N-by-M matrix A. * On exit, the upper triangular part of the array A contains * the M-by-M upper triangular matrix R. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * B (input/output) COMPLEX array, dimension (LDB,P) * On entry, the N-by-P matrix B. * On exit, if N <= P, the upper triangle of the subarray * B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; * if N > P, the elements on and above the (N-P)th subdiagonal * contain the N-by-P upper trapezoidal matrix T. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * D (input/output) COMPLEX array, dimension (N) * On entry, D is the left hand side of the GLM equation. * On exit, D is destroyed. * * X (output) COMPLEX array, dimension (M) * Y (output) COMPLEX array, dimension (P) * On exit, X and Y are the solutions of the GLM problem. * * WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. LWORK >= max(1,N+M+P). * For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB, * where NB is an upper bound for the optimal blocksizes for * CGEQRF, CGERQF, CUNMQR and CUNMRQ. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit. * < 0: if INFO = -i, the i-th argument had an illegal value. * = 1: the upper triangular factor R associated with A in the * generalized QR factorization of the pair (A, B) is * singular, so that rank(A) < M; the least squares * solution could not be computed. * = 2: the bottom (N-M) by (N-M) part of the upper trapezoidal * factor T associated with B in the generalized QR * factorization of the pair (A, B) is singular, so that * rank( A B ) < N; the least squares solution could not * be computed. * * =================================================================== * * .. Parameters .. COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. LOGICAL LQUERY INTEGER I, LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3, $ NB4, NP * .. * .. External Subroutines .. EXTERNAL CCOPY, CGEMV, CGGQRF, CTRTRS, CUNMQR, CUNMRQ, $ XERBLA * .. * .. External Functions .. INTEGER ILAENV EXTERNAL ILAENV * .. * .. Intrinsic Functions .. INTRINSIC INT, MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters * INFO = 0 NP = MIN( N, P ) LQUERY = ( LWORK.EQ.-1 ) IF( N.LT.0 ) THEN INFO = -1 ELSE IF( M.LT.0 .OR. M.GT.N ) THEN INFO = -2 ELSE IF( P.LT.0 .OR. P.LT.N-M ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -7 END IF * * Calculate workspace * IF( INFO.EQ.0) THEN IF( N.EQ.0 ) THEN LWKMIN = 1 LWKOPT = 1 ELSE NB1 = ILAENV( 1, 'CGEQRF', ' ', N, M, -1, -1 ) NB2 = ILAENV( 1, 'CGERQF', ' ', N, M, -1, -1 ) NB3 = ILAENV( 1, 'CUNMQR', ' ', N, M, P, -1 ) NB4 = ILAENV( 1, 'CUNMRQ', ' ', N, M, P, -1 ) NB = MAX( NB1, NB2, NB3, NB4 ) LWKMIN = M + N + P LWKOPT = M + NP + MAX( N, P )*NB END IF WORK( 1 ) = LWKOPT * IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -12 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CGGGLM', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Compute the GQR factorization of matrices A and B: * * Q**H*A = ( R11 ) M, Q**H*B*Z**H = ( T11 T12 ) M * ( 0 ) N-M ( 0 T22 ) N-M * M M+P-N N-M * * where R11 and T22 are upper triangular, and Q and Z are * unitary. * CALL CGGQRF( N, M, P, A, LDA, WORK, B, LDB, WORK( M+1 ), $ WORK( M+NP+1 ), LWORK-M-NP, INFO ) LOPT = WORK( M+NP+1 ) * * Update left-hand-side vector d = Q**H*d = ( d1 ) M * ( d2 ) N-M * CALL CUNMQR( 'Left', 'Conjugate transpose', N, 1, M, A, LDA, WORK, $ D, MAX( 1, N ), WORK( M+NP+1 ), LWORK-M-NP, INFO ) LOPT = MAX( LOPT, INT( WORK( M+NP+1 ) ) ) * * Solve T22*y2 = d2 for y2 * IF( N.GT.M ) THEN CALL CTRTRS( 'Upper', 'No transpose', 'Non unit', N-M, 1, $ B( M+1, M+P-N+1 ), LDB, D( M+1 ), N-M, INFO ) * IF( INFO.GT.0 ) THEN INFO = 1 RETURN END IF * CALL CCOPY( N-M, D( M+1 ), 1, Y( M+P-N+1 ), 1 ) END IF * * Set y1 = 0 * DO 10 I = 1, M + P - N Y( I ) = CZERO 10 CONTINUE * * Update d1 = d1 - T12*y2 * CALL CGEMV( 'No transpose', M, N-M, -CONE, B( 1, M+P-N+1 ), LDB, $ Y( M+P-N+1 ), 1, CONE, D, 1 ) * * Solve triangular system: R11*x = d1 * IF( M.GT.0 ) THEN CALL CTRTRS( 'Upper', 'No Transpose', 'Non unit', M, 1, A, LDA, $ D, M, INFO ) * IF( INFO.GT.0 ) THEN INFO = 2 RETURN END IF * * Copy D to X * CALL CCOPY( M, D, 1, X, 1 ) END IF * * Backward transformation y = Z**H *y * CALL CUNMRQ( 'Left', 'Conjugate transpose', P, 1, NP, $ B( MAX( 1, N-P+1 ), 1 ), LDB, WORK( M+1 ), Y, $ MAX( 1, P ), WORK( M+NP+1 ), LWORK-M-NP, INFO ) WORK( 1 ) = M + NP + MAX( LOPT, INT( WORK( M+NP+1 ) ) ) * RETURN * * End of CGGGLM * END |