CGGHRD

   November 2006

Purpose

CGGHRD reduces a pair of complex matrices (A,B) to generalized upper
Hessenberg form using unitary transformations, where A is a
general matrix and B is upper triangular.  The form of the generalized
eigenvalue problem is
   A*x = lambda*B*x,
and B is typically made upper triangular by computing its QR
factorization and moving the unitary matrix Q to the left side
of the equation.

This subroutine simultaneously reduces A to a Hessenberg matrix H:
   Q**H*A*Z = H
and transforms B to another upper triangular matrix T:
   Q**H*B*Z = T
in order to reduce the problem to its standard form
   H*y = lambda*T*y
where y = Z**H*x.

The unitary matrices Q and Z are determined as products of Givens
rotations.  They may either be formed explicitly, or they may be
postmultiplied into input matrices Q1 and Z1, so that
     Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H
     Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H
If Q1 is the unitary matrix from the QR factorization of B in the
original equation A*x = lambda*B*x, then CGGHRD reduces the original
problem to generalized Hessenberg form.

Arguments

COMPQ
(input) CHARACTER*1
= 'N': do not compute Q;
= 'I': Q is initialized to the unit matrix, and the
       unitary matrix Q is returned;
= 'V': Q must contain a unitary matrix Q1 on entry,
       and the product Q1*Q is returned.
COMPZ
(input) CHARACTER*1
= 'N': do not compute Q;
= 'I': Q is initialized to the unit matrix, and the
       unitary matrix Q is returned;
= 'V': Q must contain a unitary matrix Q1 on entry,
       and the product Q1*Q is returned.
N
(input) INTEGER
The order of the matrices A and B.  N >= 0.
ILO
(input) INTEGER
IHI
(input) INTEGER
ILO and IHI mark the rows and columns of A which are to be
reduced.  It is assumed that A is already upper triangular
in rows and columns 1:ILO-1 and IHI+1:N.  ILO and IHI are
normally set by a previous call to CGGBAL; otherwise they
should be set to 1 and N respectively.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
A
(input/output) COMPLEX array, dimension (LDA, N)
On entry, the N-by-N general matrix to be reduced.
On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H, and the
rest is set to zero.
LDA
(input) INTEGER
The leading dimension of the array A.  LDA >= max(1,N).
B
(input/output) COMPLEX array, dimension (LDB, N)
On entry, the N-by-N upper triangular matrix B.
On exit, the upper triangular matrix T = Q**H B Z.  The
elements below the diagonal are set to zero.
LDB
(input) INTEGER
The leading dimension of the array B.  LDB >= max(1,N).
Q
(input/output) COMPLEX array, dimension (LDQ, N)
On entry, if COMPQ = 'V', the unitary matrix Q1, typically
from the QR factorization of B.
On exit, if COMPQ='I', the unitary matrix Q, and if
COMPQ = 'V', the product Q1*Q.
Not referenced if COMPQ='N'.
LDQ
(input) INTEGER
The leading dimension of the array Q.
LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
Z
(input/output) COMPLEX array, dimension (LDZ, N)
On entry, if COMPZ = 'V', the unitary matrix Z1.
On exit, if COMPZ='I', the unitary matrix Z, and if
COMPZ = 'V', the product Z1*Z.
Not referenced if COMPZ='N'.
LDZ
(input) INTEGER
The leading dimension of the array Z.
LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
INFO
(output) INTEGER
= 0:  successful exit.
< 0:  if INFO = -i, the i-th argument had an illegal value.

Further Details

This routine reduces A to Hessenberg and B to triangular form by
an unblocked reduction, as described in _Matrix_Computations_,
by Golub and van Loan (Johns Hopkins Press).

Call Graph

Caller Graph