1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
SUBROUTINE CHBEV( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
$ RWORK, INFO ) * * -- LAPACK driver routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER JOBZ, UPLO INTEGER INFO, KD, LDAB, LDZ, N * .. * .. Array Arguments .. REAL RWORK( * ), W( * ) COMPLEX AB( LDAB, * ), WORK( * ), Z( LDZ, * ) * .. * * Purpose * ======= * * CHBEV computes all the eigenvalues and, optionally, eigenvectors of * a complex Hermitian band matrix A. * * Arguments * ========= * * JOBZ (input) CHARACTER*1 * = 'N': Compute eigenvalues only; * = 'V': Compute eigenvalues and eigenvectors. * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * KD (input) INTEGER * The number of superdiagonals of the matrix A if UPLO = 'U', * or the number of subdiagonals if UPLO = 'L'. KD >= 0. * * AB (input/output) COMPLEX array, dimension (LDAB, N) * On entry, the upper or lower triangle of the Hermitian band * matrix A, stored in the first KD+1 rows of the array. The * j-th column of A is stored in the j-th column of the array AB * as follows: * if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). * * On exit, AB is overwritten by values generated during the * reduction to tridiagonal form. If UPLO = 'U', the first * superdiagonal and the diagonal of the tridiagonal matrix T * are returned in rows KD and KD+1 of AB, and if UPLO = 'L', * the diagonal and first subdiagonal of T are returned in the * first two rows of AB. * * LDAB (input) INTEGER * The leading dimension of the array AB. LDAB >= KD + 1. * * W (output) REAL array, dimension (N) * If INFO = 0, the eigenvalues in ascending order. * * Z (output) COMPLEX array, dimension (LDZ, N) * If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal * eigenvectors of the matrix A, with the i-th column of Z * holding the eigenvector associated with W(i). * If JOBZ = 'N', then Z is not referenced. * * LDZ (input) INTEGER * The leading dimension of the array Z. LDZ >= 1, and if * JOBZ = 'V', LDZ >= max(1,N). * * WORK (workspace) COMPLEX array, dimension (N) * * RWORK (workspace) REAL array, dimension (max(1,3*N-2)) * * INFO (output) INTEGER * = 0: successful exit. * < 0: if INFO = -i, the i-th argument had an illegal value. * > 0: if INFO = i, the algorithm failed to converge; i * off-diagonal elements of an intermediate tridiagonal * form did not converge to zero. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) * .. * .. Local Scalars .. LOGICAL LOWER, WANTZ INTEGER IINFO, IMAX, INDE, INDRWK, ISCALE REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, $ SMLNUM * .. * .. External Functions .. LOGICAL LSAME REAL CLANHB, SLAMCH EXTERNAL LSAME, CLANHB, SLAMCH * .. * .. External Subroutines .. EXTERNAL CHBTRD, CLASCL, CSTEQR, SSCAL, SSTERF, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC SQRT * .. * .. Executable Statements .. * * Test the input parameters. * WANTZ = LSAME( JOBZ, 'V' ) LOWER = LSAME( UPLO, 'L' ) * INFO = 0 IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN INFO = -1 ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( KD.LT.0 ) THEN INFO = -4 ELSE IF( LDAB.LT.KD+1 ) THEN INFO = -6 ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN INFO = -9 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CHBEV ', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * IF( N.EQ.1 ) THEN IF( LOWER ) THEN W( 1 ) = AB( 1, 1 ) ELSE W( 1 ) = AB( KD+1, 1 ) END IF IF( WANTZ ) $ Z( 1, 1 ) = ONE RETURN END IF * * Get machine constants. * SAFMIN = SLAMCH( 'Safe minimum' ) EPS = SLAMCH( 'Precision' ) SMLNUM = SAFMIN / EPS BIGNUM = ONE / SMLNUM RMIN = SQRT( SMLNUM ) RMAX = SQRT( BIGNUM ) * * Scale matrix to allowable range, if necessary. * ANRM = CLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK ) ISCALE = 0 IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN ISCALE = 1 SIGMA = RMIN / ANRM ELSE IF( ANRM.GT.RMAX ) THEN ISCALE = 1 SIGMA = RMAX / ANRM END IF IF( ISCALE.EQ.1 ) THEN IF( LOWER ) THEN CALL CLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO ) ELSE CALL CLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO ) END IF END IF * * Call CHBTRD to reduce Hermitian band matrix to tridiagonal form. * INDE = 1 CALL CHBTRD( JOBZ, UPLO, N, KD, AB, LDAB, W, RWORK( INDE ), Z, $ LDZ, WORK, IINFO ) * * For eigenvalues only, call SSTERF. For eigenvectors, call CSTEQR. * IF( .NOT.WANTZ ) THEN CALL SSTERF( N, W, RWORK( INDE ), INFO ) ELSE INDRWK = INDE + N CALL CSTEQR( JOBZ, N, W, RWORK( INDE ), Z, LDZ, $ RWORK( INDRWK ), INFO ) END IF * * If matrix was scaled, then rescale eigenvalues appropriately. * IF( ISCALE.EQ.1 ) THEN IF( INFO.EQ.0 ) THEN IMAX = N ELSE IMAX = INFO - 1 END IF CALL SSCAL( IMAX, ONE / SIGMA, W, 1 ) END IF * RETURN * * End of CHBEV * END |