1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
SUBROUTINE CHBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
$ VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK, $ IWORK, IFAIL, INFO ) * * -- LAPACK driver routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER JOBZ, RANGE, UPLO INTEGER IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N REAL ABSTOL, VL, VU * .. * .. Array Arguments .. INTEGER IFAIL( * ), IWORK( * ) REAL RWORK( * ), W( * ) COMPLEX AB( LDAB, * ), Q( LDQ, * ), WORK( * ), $ Z( LDZ, * ) * .. * * Purpose * ======= * * CHBEVX computes selected eigenvalues and, optionally, eigenvectors * of a complex Hermitian band matrix A. Eigenvalues and eigenvectors * can be selected by specifying either a range of values or a range of * indices for the desired eigenvalues. * * Arguments * ========= * * JOBZ (input) CHARACTER*1 * = 'N': Compute eigenvalues only; * = 'V': Compute eigenvalues and eigenvectors. * * RANGE (input) CHARACTER*1 * = 'A': all eigenvalues will be found; * = 'V': all eigenvalues in the half-open interval (VL,VU] * will be found; * = 'I': the IL-th through IU-th eigenvalues will be found. * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * KD (input) INTEGER * The number of superdiagonals of the matrix A if UPLO = 'U', * or the number of subdiagonals if UPLO = 'L'. KD >= 0. * * AB (input/output) COMPLEX array, dimension (LDAB, N) * On entry, the upper or lower triangle of the Hermitian band * matrix A, stored in the first KD+1 rows of the array. The * j-th column of A is stored in the j-th column of the array AB * as follows: * if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). * * On exit, AB is overwritten by values generated during the * reduction to tridiagonal form. * * LDAB (input) INTEGER * The leading dimension of the array AB. LDAB >= KD + 1. * * Q (output) COMPLEX array, dimension (LDQ, N) * If JOBZ = 'V', the N-by-N unitary matrix used in the * reduction to tridiagonal form. * If JOBZ = 'N', the array Q is not referenced. * * LDQ (input) INTEGER * The leading dimension of the array Q. If JOBZ = 'V', then * LDQ >= max(1,N). * * VL (input) REAL * VU (input) REAL * If RANGE='V', the lower and upper bounds of the interval to * be searched for eigenvalues. VL < VU. * Not referenced if RANGE = 'A' or 'I'. * * IL (input) INTEGER * IU (input) INTEGER * If RANGE='I', the indices (in ascending order) of the * smallest and largest eigenvalues to be returned. * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. * Not referenced if RANGE = 'A' or 'V'. * * ABSTOL (input) REAL * The absolute error tolerance for the eigenvalues. * An approximate eigenvalue is accepted as converged * when it is determined to lie in an interval [a,b] * of width less than or equal to * * ABSTOL + EPS * max( |a|,|b| ) , * * where EPS is the machine precision. If ABSTOL is less than * or equal to zero, then EPS*|T| will be used in its place, * where |T| is the 1-norm of the tridiagonal matrix obtained * by reducing AB to tridiagonal form. * * Eigenvalues will be computed most accurately when ABSTOL is * set to twice the underflow threshold 2*SLAMCH('S'), not zero. * If this routine returns with INFO>0, indicating that some * eigenvectors did not converge, try setting ABSTOL to * 2*SLAMCH('S'). * * See "Computing Small Singular Values of Bidiagonal Matrices * with Guaranteed High Relative Accuracy," by Demmel and * Kahan, LAPACK Working Note #3. * * M (output) INTEGER * The total number of eigenvalues found. 0 <= M <= N. * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. * * W (output) REAL array, dimension (N) * The first M elements contain the selected eigenvalues in * ascending order. * * Z (output) COMPLEX array, dimension (LDZ, max(1,M)) * If JOBZ = 'V', then if INFO = 0, the first M columns of Z * contain the orthonormal eigenvectors of the matrix A * corresponding to the selected eigenvalues, with the i-th * column of Z holding the eigenvector associated with W(i). * If an eigenvector fails to converge, then that column of Z * contains the latest approximation to the eigenvector, and the * index of the eigenvector is returned in IFAIL. * If JOBZ = 'N', then Z is not referenced. * Note: the user must ensure that at least max(1,M) columns are * supplied in the array Z; if RANGE = 'V', the exact value of M * is not known in advance and an upper bound must be used. * * LDZ (input) INTEGER * The leading dimension of the array Z. LDZ >= 1, and if * JOBZ = 'V', LDZ >= max(1,N). * * WORK (workspace) COMPLEX array, dimension (N) * * RWORK (workspace) REAL array, dimension (7*N) * * IWORK (workspace) INTEGER array, dimension (5*N) * * IFAIL (output) INTEGER array, dimension (N) * If JOBZ = 'V', then if INFO = 0, the first M elements of * IFAIL are zero. If INFO > 0, then IFAIL contains the * indices of the eigenvectors that failed to converge. * If JOBZ = 'N', then IFAIL is not referenced. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, then i eigenvectors failed to converge. * Their indices are stored in array IFAIL. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ), $ CONE = ( 1.0E0, 0.0E0 ) ) * .. * .. Local Scalars .. LOGICAL ALLEIG, INDEIG, LOWER, TEST, VALEIG, WANTZ CHARACTER ORDER INTEGER I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL, $ INDISP, INDIWK, INDRWK, INDWRK, ISCALE, ITMP1, $ J, JJ, NSPLIT REAL ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, $ SIGMA, SMLNUM, TMP1, VLL, VUU COMPLEX CTMP1 * .. * .. External Functions .. LOGICAL LSAME REAL CLANHB, SLAMCH EXTERNAL LSAME, CLANHB, SLAMCH * .. * .. External Subroutines .. EXTERNAL CCOPY, CGEMV, CHBTRD, CLACPY, CLASCL, CSTEIN, $ CSTEQR, CSWAP, SCOPY, SSCAL, SSTEBZ, SSTERF, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, REAL, SQRT * .. * .. Executable Statements .. * * Test the input parameters. * WANTZ = LSAME( JOBZ, 'V' ) ALLEIG = LSAME( RANGE, 'A' ) VALEIG = LSAME( RANGE, 'V' ) INDEIG = LSAME( RANGE, 'I' ) LOWER = LSAME( UPLO, 'L' ) * INFO = 0 IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN INFO = -1 ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN INFO = -2 ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( KD.LT.0 ) THEN INFO = -5 ELSE IF( LDAB.LT.KD+1 ) THEN INFO = -7 ELSE IF( WANTZ .AND. LDQ.LT.MAX( 1, N ) ) THEN INFO = -9 ELSE IF( VALEIG ) THEN IF( N.GT.0 .AND. VU.LE.VL ) $ INFO = -11 ELSE IF( INDEIG ) THEN IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN INFO = -12 ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN INFO = -13 END IF END IF END IF IF( INFO.EQ.0 ) THEN IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) $ INFO = -18 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CHBEVX', -INFO ) RETURN END IF * * Quick return if possible * M = 0 IF( N.EQ.0 ) $ RETURN * IF( N.EQ.1 ) THEN M = 1 IF( LOWER ) THEN CTMP1 = AB( 1, 1 ) ELSE CTMP1 = AB( KD+1, 1 ) END IF TMP1 = REAL( CTMP1 ) IF( VALEIG ) THEN IF( .NOT.( VL.LT.TMP1 .AND. VU.GE.TMP1 ) ) $ M = 0 END IF IF( M.EQ.1 ) THEN W( 1 ) = CTMP1 IF( WANTZ ) $ Z( 1, 1 ) = CONE END IF RETURN END IF * * Get machine constants. * SAFMIN = SLAMCH( 'Safe minimum' ) EPS = SLAMCH( 'Precision' ) SMLNUM = SAFMIN / EPS BIGNUM = ONE / SMLNUM RMIN = SQRT( SMLNUM ) RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) ) * * Scale matrix to allowable range, if necessary. * ISCALE = 0 ABSTLL = ABSTOL IF ( VALEIG ) THEN VLL = VL VUU = VU ELSE VLL = ZERO VUU = ZERO ENDIF ANRM = CLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK ) IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN ISCALE = 1 SIGMA = RMIN / ANRM ELSE IF( ANRM.GT.RMAX ) THEN ISCALE = 1 SIGMA = RMAX / ANRM END IF IF( ISCALE.EQ.1 ) THEN IF( LOWER ) THEN CALL CLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO ) ELSE CALL CLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO ) END IF IF( ABSTOL.GT.0 ) $ ABSTLL = ABSTOL*SIGMA IF( VALEIG ) THEN VLL = VL*SIGMA VUU = VU*SIGMA END IF END IF * * Call CHBTRD to reduce Hermitian band matrix to tridiagonal form. * INDD = 1 INDE = INDD + N INDRWK = INDE + N INDWRK = 1 CALL CHBTRD( JOBZ, UPLO, N, KD, AB, LDAB, RWORK( INDD ), $ RWORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO ) * * If all eigenvalues are desired and ABSTOL is less than or equal * to zero, then call SSTERF or CSTEQR. If this fails for some * eigenvalue, then try SSTEBZ. * TEST = .FALSE. IF (INDEIG) THEN IF (IL.EQ.1 .AND. IU.EQ.N) THEN TEST = .TRUE. END IF END IF IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN CALL SCOPY( N, RWORK( INDD ), 1, W, 1 ) INDEE = INDRWK + 2*N IF( .NOT.WANTZ ) THEN CALL SCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 ) CALL SSTERF( N, W, RWORK( INDEE ), INFO ) ELSE CALL CLACPY( 'A', N, N, Q, LDQ, Z, LDZ ) CALL SCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 ) CALL CSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ, $ RWORK( INDRWK ), INFO ) IF( INFO.EQ.0 ) THEN DO 10 I = 1, N IFAIL( I ) = 0 10 CONTINUE END IF END IF IF( INFO.EQ.0 ) THEN M = N GO TO 30 END IF INFO = 0 END IF * * Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN. * IF( WANTZ ) THEN ORDER = 'B' ELSE ORDER = 'E' END IF INDIBL = 1 INDISP = INDIBL + N INDIWK = INDISP + N CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL, $ RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W, $ IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ), $ IWORK( INDIWK ), INFO ) * IF( WANTZ ) THEN CALL CSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W, $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ, $ RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO ) * * Apply unitary matrix used in reduction to tridiagonal * form to eigenvectors returned by CSTEIN. * DO 20 J = 1, M CALL CCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 ) CALL CGEMV( 'N', N, N, CONE, Q, LDQ, WORK, 1, CZERO, $ Z( 1, J ), 1 ) 20 CONTINUE END IF * * If matrix was scaled, then rescale eigenvalues appropriately. * 30 CONTINUE IF( ISCALE.EQ.1 ) THEN IF( INFO.EQ.0 ) THEN IMAX = M ELSE IMAX = INFO - 1 END IF CALL SSCAL( IMAX, ONE / SIGMA, W, 1 ) END IF * * If eigenvalues are not in order, then sort them, along with * eigenvectors. * IF( WANTZ ) THEN DO 50 J = 1, M - 1 I = 0 TMP1 = W( J ) DO 40 JJ = J + 1, M IF( W( JJ ).LT.TMP1 ) THEN I = JJ TMP1 = W( JJ ) END IF 40 CONTINUE * IF( I.NE.0 ) THEN ITMP1 = IWORK( INDIBL+I-1 ) W( I ) = W( J ) IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 ) W( J ) = TMP1 IWORK( INDIBL+J-1 ) = ITMP1 CALL CSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 ) IF( INFO.NE.0 ) THEN ITMP1 = IFAIL( I ) IFAIL( I ) = IFAIL( J ) IFAIL( J ) = ITMP1 END IF END IF 50 CONTINUE END IF * RETURN * * End of CHBEVX * END |