1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
SUBROUTINE CHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
* * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, ITYPE, LDA, LDB, N * .. * .. Array Arguments .. COMPLEX A( LDA, * ), B( LDB, * ) * .. * * Purpose * ======= * * CHEGST reduces a complex Hermitian-definite generalized * eigenproblem to standard form. * * If ITYPE = 1, the problem is A*x = lambda*B*x, * and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H) * * If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or * B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L. * * B must have been previously factorized as U**H*U or L*L**H by CPOTRF. * * Arguments * ========= * * ITYPE (input) INTEGER * = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H); * = 2 or 3: compute U*A*U**H or L**H*A*L. * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored and B is factored as * U**H*U; * = 'L': Lower triangle of A is stored and B is factored as * L*L**H. * * N (input) INTEGER * The order of the matrices A and B. N >= 0. * * A (input/output) COMPLEX array, dimension (LDA,N) * On entry, the Hermitian matrix A. If UPLO = 'U', the leading * N-by-N upper triangular part of A contains the upper * triangular part of the matrix A, and the strictly lower * triangular part of A is not referenced. If UPLO = 'L', the * leading N-by-N lower triangular part of A contains the lower * triangular part of the matrix A, and the strictly upper * triangular part of A is not referenced. * * On exit, if INFO = 0, the transformed matrix, stored in the * same format as A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * B (input) COMPLEX array, dimension (LDB,N) * The triangular factor from the Cholesky factorization of B, * as returned by CPOTRF. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Parameters .. REAL ONE PARAMETER ( ONE = 1.0E+0 ) COMPLEX CONE, HALF PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ), $ HALF = ( 0.5E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER K, KB, NB * .. * .. External Subroutines .. EXTERNAL CHEGS2, CHEMM, CHER2K, CTRMM, CTRSM, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV EXTERNAL LSAME, ILAENV * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN INFO = -1 ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -7 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CHEGST', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Determine the block size for this environment. * NB = ILAENV( 1, 'CHEGST', UPLO, N, -1, -1, -1 ) * IF( NB.LE.1 .OR. NB.GE.N ) THEN * * Use unblocked code * CALL CHEGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO ) ELSE * * Use blocked code * IF( ITYPE.EQ.1 ) THEN IF( UPPER ) THEN * * Compute inv(U**H)*A*inv(U) * DO 10 K = 1, N, NB KB = MIN( N-K+1, NB ) * * Update the upper triangle of A(k:n,k:n) * CALL CHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA, $ B( K, K ), LDB, INFO ) IF( K+KB.LE.N ) THEN CALL CTRSM( 'Left', UPLO, 'Conjugate transpose', $ 'Non-unit', KB, N-K-KB+1, CONE, $ B( K, K ), LDB, A( K, K+KB ), LDA ) CALL CHEMM( 'Left', UPLO, KB, N-K-KB+1, -HALF, $ A( K, K ), LDA, B( K, K+KB ), LDB, $ CONE, A( K, K+KB ), LDA ) CALL CHER2K( UPLO, 'Conjugate transpose', N-K-KB+1, $ KB, -CONE, A( K, K+KB ), LDA, $ B( K, K+KB ), LDB, ONE, $ A( K+KB, K+KB ), LDA ) CALL CHEMM( 'Left', UPLO, KB, N-K-KB+1, -HALF, $ A( K, K ), LDA, B( K, K+KB ), LDB, $ CONE, A( K, K+KB ), LDA ) CALL CTRSM( 'Right', UPLO, 'No transpose', $ 'Non-unit', KB, N-K-KB+1, CONE, $ B( K+KB, K+KB ), LDB, A( K, K+KB ), $ LDA ) END IF 10 CONTINUE ELSE * * Compute inv(L)*A*inv(L**H) * DO 20 K = 1, N, NB KB = MIN( N-K+1, NB ) * * Update the lower triangle of A(k:n,k:n) * CALL CHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA, $ B( K, K ), LDB, INFO ) IF( K+KB.LE.N ) THEN CALL CTRSM( 'Right', UPLO, 'Conjugate transpose', $ 'Non-unit', N-K-KB+1, KB, CONE, $ B( K, K ), LDB, A( K+KB, K ), LDA ) CALL CHEMM( 'Right', UPLO, N-K-KB+1, KB, -HALF, $ A( K, K ), LDA, B( K+KB, K ), LDB, $ CONE, A( K+KB, K ), LDA ) CALL CHER2K( UPLO, 'No transpose', N-K-KB+1, KB, $ -CONE, A( K+KB, K ), LDA, $ B( K+KB, K ), LDB, ONE, $ A( K+KB, K+KB ), LDA ) CALL CHEMM( 'Right', UPLO, N-K-KB+1, KB, -HALF, $ A( K, K ), LDA, B( K+KB, K ), LDB, $ CONE, A( K+KB, K ), LDA ) CALL CTRSM( 'Left', UPLO, 'No transpose', $ 'Non-unit', N-K-KB+1, KB, CONE, $ B( K+KB, K+KB ), LDB, A( K+KB, K ), $ LDA ) END IF 20 CONTINUE END IF ELSE IF( UPPER ) THEN * * Compute U*A*U**H * DO 30 K = 1, N, NB KB = MIN( N-K+1, NB ) * * Update the upper triangle of A(1:k+kb-1,1:k+kb-1) * CALL CTRMM( 'Left', UPLO, 'No transpose', 'Non-unit', $ K-1, KB, CONE, B, LDB, A( 1, K ), LDA ) CALL CHEMM( 'Right', UPLO, K-1, KB, HALF, A( K, K ), $ LDA, B( 1, K ), LDB, CONE, A( 1, K ), $ LDA ) CALL CHER2K( UPLO, 'No transpose', K-1, KB, CONE, $ A( 1, K ), LDA, B( 1, K ), LDB, ONE, A, $ LDA ) CALL CHEMM( 'Right', UPLO, K-1, KB, HALF, A( K, K ), $ LDA, B( 1, K ), LDB, CONE, A( 1, K ), $ LDA ) CALL CTRMM( 'Right', UPLO, 'Conjugate transpose', $ 'Non-unit', K-1, KB, CONE, B( K, K ), LDB, $ A( 1, K ), LDA ) CALL CHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA, $ B( K, K ), LDB, INFO ) 30 CONTINUE ELSE * * Compute L**H*A*L * DO 40 K = 1, N, NB KB = MIN( N-K+1, NB ) * * Update the lower triangle of A(1:k+kb-1,1:k+kb-1) * CALL CTRMM( 'Right', UPLO, 'No transpose', 'Non-unit', $ KB, K-1, CONE, B, LDB, A( K, 1 ), LDA ) CALL CHEMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ), $ LDA, B( K, 1 ), LDB, CONE, A( K, 1 ), $ LDA ) CALL CHER2K( UPLO, 'Conjugate transpose', K-1, KB, $ CONE, A( K, 1 ), LDA, B( K, 1 ), LDB, $ ONE, A, LDA ) CALL CHEMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ), $ LDA, B( K, 1 ), LDB, CONE, A( K, 1 ), $ LDA ) CALL CTRMM( 'Left', UPLO, 'Conjugate transpose', $ 'Non-unit', KB, K-1, CONE, B( K, K ), LDB, $ A( K, 1 ), LDA ) CALL CHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA, $ B( K, K ), LDB, INFO ) 40 CONTINUE END IF END IF END IF RETURN * * End of CHEGST * END |