CHPGST

Purpose

CHPGST reduces a complex Hermitian-definite generalized
eigenproblem to standard form, using packed storage.

If ITYPE = 1, the problem is A*x = lambda*B*x,
and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)

If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L.

B must have been previously factorized as U**H*U or L*L**H by CPPTRF.

Arguments

ITYPE
(input) INTEGER
= 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
= 2 or 3: compute U*A*U**H or L**H*A*L.
UPLO
(input) CHARACTER*1
= 'U':  Upper triangle of A is stored and B is factored as
        U**H*U;
= 'L':  Lower triangle of A is stored and B is factored as
        L*L**H.
N
(input) INTEGER
The order of the matrices A and B.  N >= 0.
AP
(input/output) COMPLEX array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
A, packed columnwise in a linear array.  The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

On exit, if INFO = 0, the transformed matrix, stored in the
same format as A.
BP
(input) COMPLEX array, dimension (N*(N+1)/2)
The triangular factor from the Cholesky factorization of B,
stored in the same format as A, as returned by CPPTRF.
INFO
(output) INTEGER
= 0:  successful exit
< 0:  if INFO = -i, the i-th argument had an illegal value

Call Graph

Caller Graph