CHPGVD

Purpose

CHPGVD computes all the eigenvalues and, optionally, the eigenvectors
of a complex generalized Hermitian-definite eigenproblem, of the form
A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
B are assumed to be Hermitian, stored in packed format, and B is also
positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.

The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.

Arguments

ITYPE
(input) INTEGER
Specifies the problem type to be solved:
= 1:  A*x = (lambda)*B*x
= 2:  A*B*x = (lambda)*x
= 3:  B*A*x = (lambda)*x
JOBZ
(input) CHARACTER*1
= 'N':  Compute eigenvalues only;
= 'V':  Compute eigenvalues and eigenvectors.
UPLO
(input) CHARACTER*1
= 'U':  Upper triangles of A and B are stored;
= 'L':  Lower triangles of A and B are stored.
N
(input) INTEGER
The order of the matrices A and B.  N >= 0.
AP
(input/output) COMPLEX array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
A, packed columnwise in a linear array.  The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

On exit, the contents of AP are destroyed.
BP
(input/output) COMPLEX array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
B, packed columnwise in a linear array.  The j-th column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

On exit, the triangular factor U or L from the Cholesky
factorization B = U**H*U or B = L*L**H, in the same storage
format as B.
W
(output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z
(output) COMPLEX array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors.  The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**H*B*Z = I;
if ITYPE = 3, Z**H*inv(B)*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ
(input) INTEGER
The leading dimension of the array Z.  LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK
(workspace) COMPLEX array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the required LWORK.
LWORK
(input) INTEGER
The dimension of array WORK.
If N <= 1,               LWORK >= 1.
If JOBZ = 'N' and N > 1, LWORK >= N.
If JOBZ = 'V' and N > 1, LWORK >= 2*N.

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the required sizes of the WORK, RWORK and
IWORK arrays, returns these values as the first entries of
the WORK, RWORK and IWORK arrays, and no error message
related to LWORK or LRWORK or LIWORK is issued by XERBLA.
RWORK
(workspace) REAL array, dimension (MAX(1,LRWORK))
On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
LRWORK
(input) INTEGER
The dimension of array RWORK.
If N <= 1,               LRWORK >= 1.
If JOBZ = 'N' and N > 1, LRWORK >= N.
If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.

If LRWORK = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the WORK, RWORK
and IWORK arrays, returns these values as the first entries
of the WORK, RWORK and IWORK arrays, and no error message
related to LWORK or LRWORK or LIWORK is issued by XERBLA.
IWORK
(workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
LIWORK
(input) INTEGER
The dimension of array IWORK.
If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.

If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the WORK, RWORK
and IWORK arrays, returns these values as the first entries
of the WORK, RWORK and IWORK arrays, and no error message
related to LWORK or LRWORK or LIWORK is issued by XERBLA.
INFO
(output) INTEGER
= 0:  successful exit
< 0:  if INFO = -i, the i-th argument had an illegal value
> 0:  CPPTRF or CHPEVD returned an error code:
   <= N:  if INFO = i, CHPEVD failed to converge;
          i off-diagonal elements of an intermediate
          tridiagonal form did not convergeto zero;
   > N:   if INFO = N + i, for 1 <= i <= n, then the leading
          minor of order i of B is not positive definite.
          The factorization of B could not be completed and
          no eigenvalues or eigenvectors were computed.

Further Details

Based on contributions by
   Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

Call Graph

Caller Graph