1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
      SUBROUTINE CLAED0QSIZNDEQLDQQSTORELDQSRWORK,
     $                   IWORKINFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFOLDQLDQSNQSIZ
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK* )
      REAL               D* ), E* ), RWORK* )
      COMPLEX            QLDQ* ), QSTORELDQS* )
*     ..
*
*  Purpose
*  =======
*
*  Using the divide and conquer method, CLAED0 computes all eigenvalues
*  of a symmetric tridiagonal matrix which is one diagonal block of
*  those from reducing a dense or band Hermitian matrix and
*  corresponding eigenvectors of the dense or band matrix.
*
*  Arguments
*  =========
*
*  QSIZ   (input) INTEGER
*         The dimension of the unitary matrix used to reduce
*         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
*
*  N      (input) INTEGER
*         The dimension of the symmetric tridiagonal matrix.  N >= 0.
*
*  D      (input/output) REAL array, dimension (N)
*         On entry, the diagonal elements of the tridiagonal matrix.
*         On exit, the eigenvalues in ascending order.
*
*  E      (input/output) REAL array, dimension (N-1)
*         On entry, the off-diagonal elements of the tridiagonal matrix.
*         On exit, E has been destroyed.
*
*  Q      (input/output) COMPLEX array, dimension (LDQ,N)
*         On entry, Q must contain an QSIZ x N matrix whose columns
*         unitarily orthonormal. It is a part of the unitary matrix
*         that reduces the full dense Hermitian matrix to a
*         (reducible) symmetric tridiagonal matrix.
*
*  LDQ    (input) INTEGER
*         The leading dimension of the array Q.  LDQ >= max(1,N).
*
*  IWORK  (workspace) INTEGER array,
*         the dimension of IWORK must be at least
*                      6 + 6*N + 5*N*lg N
*                      ( lg( N ) = smallest integer k
*                                  such that 2^k >= N )
*
*  RWORK  (workspace) REAL array,
*                               dimension (1 + 3*N + 2*N*lg N + 3*N**2)
*                        ( lg( N ) = smallest integer k
*                                    such that 2^k >= N )
*
*  QSTORE (workspace) COMPLEX array, dimension (LDQS, N)
*         Used to store parts of
*         the eigenvector matrix when the updating matrix multiplies
*         take place.
*
*  LDQS   (input) INTEGER
*         The leading dimension of the array QSTORE.
*         LDQS >= max(1,N).
*
*  INFO   (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  The algorithm failed to compute an eigenvalue while
*                working on the submatrix lying in rows and columns
*                INFO/(N+1) through mod(INFO,N+1).
*
*  =====================================================================
*
*  Warning:      N could be as big as QSIZ!
*
*     .. Parameters ..
      REAL               TWO
      PARAMETER          ( TWO = 2.E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            CURLVLCURPRBCURRIIGIVCLIGIVNM,
     $                   IGIVPTINDXQIPERMIPRMPTIQIQPTRIWREM,
     $                   JKLGNLLMATSIZMSD2SMLSIZSMM1,
     $                   SPM1SPM2SUBMATSUBPBSTLVLS
      REAL               TEMP
*     ..
*     .. External Subroutines ..
      EXTERNAL           CCOPYCLACRMCLAED7SCOPYSSTEQRXERBLA
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSINTLOGMAXREAL
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
*     IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN
*        INFO = -1
*     ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) )
*    $        THEN
      IFQSIZ.LT.MAX0N ) ) THEN
         INFO = -1
      ELSE IFN.LT.0 ) THEN
         INFO = -2
      ELSE IFLDQ.LT.MAX1N ) ) THEN
         INFO = -6
      ELSE IFLDQS.LT.MAX1N ) ) THEN
         INFO = -8
      END IF
      IFINFO.NE.0 ) THEN
         CALL XERBLA'CLAED0'-INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IFN.EQ.0 )
     $   RETURN
*
      SMLSIZ = ILAENV9'CLAED0'' '0000 )
*
*     Determine the size and placement of the submatrices, and save in
*     the leading elements of IWORK.
*
      IWORK1 ) = N
      SUBPBS = 1
      TLVLS = 0
   10 CONTINUE
      IFIWORKSUBPBS ).GT.SMLSIZ ) THEN
         DO 20 J = SUBPBS1-1
            IWORK2*J ) = ( IWORKJ )+1 ) / 2
            IWORK2*J-1 ) = IWORKJ ) / 2
   20    CONTINUE
         TLVLS = TLVLS + 1
         SUBPBS = 2*SUBPBS
         GO TO 10
      END IF
      DO 30 J = 2SUBPBS
         IWORKJ ) = IWORKJ ) + IWORKJ-1 )
   30 CONTINUE
*
*     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1
*     using rank-1 modifications (cuts).
*
      SPM1 = SUBPBS - 1
      DO 40 I = 1SPM1
         SUBMAT = IWORKI ) + 1
         SMM1 = SUBMAT - 1
         DSMM1 ) = DSMM1 ) - ABSESMM1 ) )
         DSUBMAT ) = DSUBMAT ) - ABSESMM1 ) )
   40 CONTINUE
*
      INDXQ = 4*N + 3
*
*     Set up workspaces for eigenvalues only/accumulate new vectors
*     routine
*
      TEMP = LOGREALN ) ) / LOGTWO )
      LGN = INTTEMP )
      IF2**LGN.LT.N )
     $   LGN = LGN + 1
      IF2**LGN.LT.N )
     $   LGN = LGN + 1
      IPRMPT = INDXQ + N + 1
      IPERM = IPRMPT + N*LGN
      IQPTR = IPERM + N*LGN
      IGIVPT = IQPTR + N + 2
      IGIVCL = IGIVPT + N*LGN
*
      IGIVNM = 1
      IQ = IGIVNM + 2*N*LGN
      IWREM = IQ + N**2 + 1
*     Initialize pointers
      DO 50 I = 0SUBPBS
         IWORKIPRMPT+I ) = 1
         IWORKIGIVPT+I ) = 1
   50 CONTINUE
      IWORKIQPTR ) = 1
*
*     Solve each submatrix eigenproblem at the bottom of the divide and
*     conquer tree.
*
      CURR = 0
      DO 70 I = 0SPM1
         IFI.EQ.0 ) THEN
            SUBMAT = 1
            MATSIZ = IWORK1 )
         ELSE
            SUBMAT = IWORKI ) + 1
            MATSIZ = IWORKI+1 ) - IWORKI )
         END IF
         LL = IQ - 1 + IWORKIQPTR+CURR )
         CALL SSTEQR'I'MATSIZDSUBMAT ), ESUBMAT ),
     $                RWORKLL ), MATSIZRWORKINFO )
         CALL CLACRMQSIZMATSIZQ1SUBMAT ), LDQRWORKLL ),
     $                MATSIZQSTORE1SUBMAT ), LDQS,
     $                RWORKIWREM ) )
         IWORKIQPTR+CURR+1 ) = IWORKIQPTR+CURR ) + MATSIZ**2
         CURR = CURR + 1
         IFINFO.GT.0 ) THEN
            INFO = SUBMAT*N+1 ) + SUBMAT + MATSIZ - 1
            RETURN
         END IF
         K = 1
         DO 60 J = SUBMATIWORKI+1 )
            IWORKINDXQ+J ) = K
            K = K + 1
   60    CONTINUE
   70 CONTINUE
*
*     Successively merge eigensystems of adjacent submatrices
*     into eigensystem for the corresponding larger matrix.
*
*     while ( SUBPBS > 1 )
*
      CURLVL = 1
   80 CONTINUE
      IFSUBPBS.GT.1 ) THEN
         SPM2 = SUBPBS - 2
         DO 90 I = 0SPM22
            IFI.EQ.0 ) THEN
               SUBMAT = 1
               MATSIZ = IWORK2 )
               MSD2 = IWORK1 )
               CURPRB = 0
            ELSE
               SUBMAT = IWORKI ) + 1
               MATSIZ = IWORKI+2 ) - IWORKI )
               MSD2 = MATSIZ / 2
               CURPRB = CURPRB + 1
            END IF
*
*     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)
*     into an eigensystem of size MATSIZ.  CLAED7 handles the case
*     when the eigenvectors of a full or band Hermitian matrix (which
*     was reduced to tridiagonal form) are desired.
*
*     I am free to use Q as a valuable working space until Loop 150.
*
            CALL CLAED7MATSIZMSD2QSIZTLVLSCURLVLCURPRB,
     $                   DSUBMAT ), QSTORE1SUBMAT ), LDQS,
     $                   ESUBMAT+MSD2-1 ), IWORKINDXQ+SUBMAT ),
     $                   RWORKIQ ), IWORKIQPTR ), IWORKIPRMPT ),
     $                   IWORKIPERM ), IWORKIGIVPT ),
     $                   IWORKIGIVCL ), RWORKIGIVNM ),
     $                   Q1SUBMAT ), RWORKIWREM ),
     $                   IWORKSUBPBS+1 ), INFO )
            IFINFO.GT.0 ) THEN
               INFO = SUBMAT*N+1 ) + SUBMAT + MATSIZ - 1
               RETURN
            END IF
            IWORKI / 2+1 ) = IWORKI+2 )
   90    CONTINUE
         SUBPBS = SUBPBS / 2
         CURLVL = CURLVL + 1
         GO TO 80
      END IF
*
*     end while
*
*     Re-merge the eigenvalues/vectors which were deflated at the final
*     merge step.
*
      DO 100 I = 1N
         J = IWORKINDXQ+I )
         RWORKI ) = DJ )
         CALL CCOPYQSIZQSTORE1J ), 1Q1I ), 1 )
  100 CONTINUE
      CALL SCOPYNRWORK1D1 )
*
      RETURN
*
*     End of CLAED0
*
      END