1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
SUBROUTINE CLAED8( K, N, QSIZ, Q, LDQ, D, RHO, CUTPNT, Z, DLAMDA,
$ Q2, LDQ2, W, INDXP, INDX, INDXQ, PERM, GIVPTR, $ GIVCOL, GIVNUM, INFO ) * * -- LAPACK routine (version 3.2.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * June 2010 * * .. Scalar Arguments .. INTEGER CUTPNT, GIVPTR, INFO, K, LDQ, LDQ2, N, QSIZ REAL RHO * .. * .. Array Arguments .. INTEGER GIVCOL( 2, * ), INDX( * ), INDXP( * ), $ INDXQ( * ), PERM( * ) REAL D( * ), DLAMDA( * ), GIVNUM( 2, * ), W( * ), $ Z( * ) COMPLEX Q( LDQ, * ), Q2( LDQ2, * ) * .. * * Purpose * ======= * * CLAED8 merges the two sets of eigenvalues together into a single * sorted set. Then it tries to deflate the size of the problem. * There are two ways in which deflation can occur: when two or more * eigenvalues are close together or if there is a tiny element in the * Z vector. For each such occurrence the order of the related secular * equation problem is reduced by one. * * Arguments * ========= * * K (output) INTEGER * Contains the number of non-deflated eigenvalues. * This is the order of the related secular equation. * * N (input) INTEGER * The dimension of the symmetric tridiagonal matrix. N >= 0. * * QSIZ (input) INTEGER * The dimension of the unitary matrix used to reduce * the dense or band matrix to tridiagonal form. * QSIZ >= N if ICOMPQ = 1. * * Q (input/output) COMPLEX array, dimension (LDQ,N) * On entry, Q contains the eigenvectors of the partially solved * system which has been previously updated in matrix * multiplies with other partially solved eigensystems. * On exit, Q contains the trailing (N-K) updated eigenvectors * (those which were deflated) in its last N-K columns. * * LDQ (input) INTEGER * The leading dimension of the array Q. LDQ >= max( 1, N ). * * D (input/output) REAL array, dimension (N) * On entry, D contains the eigenvalues of the two submatrices to * be combined. On exit, D contains the trailing (N-K) updated * eigenvalues (those which were deflated) sorted into increasing * order. * * RHO (input/output) REAL * Contains the off diagonal element associated with the rank-1 * cut which originally split the two submatrices which are now * being recombined. RHO is modified during the computation to * the value required by SLAED3. * * CUTPNT (input) INTEGER * Contains the location of the last eigenvalue in the leading * sub-matrix. MIN(1,N) <= CUTPNT <= N. * * Z (input) REAL array, dimension (N) * On input this vector contains the updating vector (the last * row of the first sub-eigenvector matrix and the first row of * the second sub-eigenvector matrix). The contents of Z are * destroyed during the updating process. * * DLAMDA (output) REAL array, dimension (N) * Contains a copy of the first K eigenvalues which will be used * by SLAED3 to form the secular equation. * * Q2 (output) COMPLEX array, dimension (LDQ2,N) * If ICOMPQ = 0, Q2 is not referenced. Otherwise, * Contains a copy of the first K eigenvectors which will be used * by SLAED7 in a matrix multiply (SGEMM) to update the new * eigenvectors. * * LDQ2 (input) INTEGER * The leading dimension of the array Q2. LDQ2 >= max( 1, N ). * * W (output) REAL array, dimension (N) * This will hold the first k values of the final * deflation-altered z-vector and will be passed to SLAED3. * * INDXP (workspace) INTEGER array, dimension (N) * This will contain the permutation used to place deflated * values of D at the end of the array. On output INDXP(1:K) * points to the nondeflated D-values and INDXP(K+1:N) * points to the deflated eigenvalues. * * INDX (workspace) INTEGER array, dimension (N) * This will contain the permutation used to sort the contents of * D into ascending order. * * INDXQ (input) INTEGER array, dimension (N) * This contains the permutation which separately sorts the two * sub-problems in D into ascending order. Note that elements in * the second half of this permutation must first have CUTPNT * added to their values in order to be accurate. * * PERM (output) INTEGER array, dimension (N) * Contains the permutations (from deflation and sorting) to be * applied to each eigenblock. * * GIVPTR (output) INTEGER * Contains the number of Givens rotations which took place in * this subproblem. * * GIVCOL (output) INTEGER array, dimension (2, N) * Each pair of numbers indicates a pair of columns to take place * in a Givens rotation. * * GIVNUM (output) REAL array, dimension (2, N) * Each number indicates the S value to be used in the * corresponding Givens rotation. * * INFO (output) INTEGER * = 0: successful exit. * < 0: if INFO = -i, the i-th argument had an illegal value. * * ===================================================================== * * .. Parameters .. REAL MONE, ZERO, ONE, TWO, EIGHT PARAMETER ( MONE = -1.0E0, ZERO = 0.0E0, ONE = 1.0E0, $ TWO = 2.0E0, EIGHT = 8.0E0 ) * .. * .. Local Scalars .. INTEGER I, IMAX, J, JLAM, JMAX, JP, K2, N1, N1P1, N2 REAL C, EPS, S, T, TAU, TOL * .. * .. External Functions .. INTEGER ISAMAX REAL SLAMCH, SLAPY2 EXTERNAL ISAMAX, SLAMCH, SLAPY2 * .. * .. External Subroutines .. EXTERNAL CCOPY, CLACPY, CSROT, SCOPY, SLAMRG, SSCAL, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, SQRT * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 * IF( N.LT.0 ) THEN INFO = -2 ELSE IF( QSIZ.LT.N ) THEN INFO = -3 ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( CUTPNT.LT.MIN( 1, N ) .OR. CUTPNT.GT.N ) THEN INFO = -8 ELSE IF( LDQ2.LT.MAX( 1, N ) ) THEN INFO = -12 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CLAED8', -INFO ) RETURN END IF * * Need to initialize GIVPTR to O here in case of quick exit * to prevent an unspecified code behavior (usually sigfault) * when IWORK array on entry to *stedc is not zeroed * (or at least some IWORK entries which used in *laed7 for GIVPTR). * GIVPTR = 0 * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * N1 = CUTPNT N2 = N - N1 N1P1 = N1 + 1 * IF( RHO.LT.ZERO ) THEN CALL SSCAL( N2, MONE, Z( N1P1 ), 1 ) END IF * * Normalize z so that norm(z) = 1 * T = ONE / SQRT( TWO ) DO 10 J = 1, N INDX( J ) = J 10 CONTINUE CALL SSCAL( N, T, Z, 1 ) RHO = ABS( TWO*RHO ) * * Sort the eigenvalues into increasing order * DO 20 I = CUTPNT + 1, N INDXQ( I ) = INDXQ( I ) + CUTPNT 20 CONTINUE DO 30 I = 1, N DLAMDA( I ) = D( INDXQ( I ) ) W( I ) = Z( INDXQ( I ) ) 30 CONTINUE I = 1 J = CUTPNT + 1 CALL SLAMRG( N1, N2, DLAMDA, 1, 1, INDX ) DO 40 I = 1, N D( I ) = DLAMDA( INDX( I ) ) Z( I ) = W( INDX( I ) ) 40 CONTINUE * * Calculate the allowable deflation tolerance * IMAX = ISAMAX( N, Z, 1 ) JMAX = ISAMAX( N, D, 1 ) EPS = SLAMCH( 'Epsilon' ) TOL = EIGHT*EPS*ABS( D( JMAX ) ) * * If the rank-1 modifier is small enough, no more needs to be done * -- except to reorganize Q so that its columns correspond with the * elements in D. * IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN K = 0 DO 50 J = 1, N PERM( J ) = INDXQ( INDX( J ) ) CALL CCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 ) 50 CONTINUE CALL CLACPY( 'A', QSIZ, N, Q2( 1, 1 ), LDQ2, Q( 1, 1 ), LDQ ) RETURN END IF * * If there are multiple eigenvalues then the problem deflates. Here * the number of equal eigenvalues are found. As each equal * eigenvalue is found, an elementary reflector is computed to rotate * the corresponding eigensubspace so that the corresponding * components of Z are zero in this new basis. * K = 0 K2 = N + 1 DO 60 J = 1, N IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN * * Deflate due to small z component. * K2 = K2 - 1 INDXP( K2 ) = J IF( J.EQ.N ) $ GO TO 100 ELSE JLAM = J GO TO 70 END IF 60 CONTINUE 70 CONTINUE J = J + 1 IF( J.GT.N ) $ GO TO 90 IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN * * Deflate due to small z component. * K2 = K2 - 1 INDXP( K2 ) = J ELSE * * Check if eigenvalues are close enough to allow deflation. * S = Z( JLAM ) C = Z( J ) * * Find sqrt(a**2+b**2) without overflow or * destructive underflow. * TAU = SLAPY2( C, S ) T = D( J ) - D( JLAM ) C = C / TAU S = -S / TAU IF( ABS( T*C*S ).LE.TOL ) THEN * * Deflation is possible. * Z( J ) = TAU Z( JLAM ) = ZERO * * Record the appropriate Givens rotation * GIVPTR = GIVPTR + 1 GIVCOL( 1, GIVPTR ) = INDXQ( INDX( JLAM ) ) GIVCOL( 2, GIVPTR ) = INDXQ( INDX( J ) ) GIVNUM( 1, GIVPTR ) = C GIVNUM( 2, GIVPTR ) = S CALL CSROT( QSIZ, Q( 1, INDXQ( INDX( JLAM ) ) ), 1, $ Q( 1, INDXQ( INDX( J ) ) ), 1, C, S ) T = D( JLAM )*C*C + D( J )*S*S D( J ) = D( JLAM )*S*S + D( J )*C*C D( JLAM ) = T K2 = K2 - 1 I = 1 80 CONTINUE IF( K2+I.LE.N ) THEN IF( D( JLAM ).LT.D( INDXP( K2+I ) ) ) THEN INDXP( K2+I-1 ) = INDXP( K2+I ) INDXP( K2+I ) = JLAM I = I + 1 GO TO 80 ELSE INDXP( K2+I-1 ) = JLAM END IF ELSE INDXP( K2+I-1 ) = JLAM END IF JLAM = J ELSE K = K + 1 W( K ) = Z( JLAM ) DLAMDA( K ) = D( JLAM ) INDXP( K ) = JLAM JLAM = J END IF END IF GO TO 70 90 CONTINUE * * Record the last eigenvalue. * K = K + 1 W( K ) = Z( JLAM ) DLAMDA( K ) = D( JLAM ) INDXP( K ) = JLAM * 100 CONTINUE * * Sort the eigenvalues and corresponding eigenvectors into DLAMDA * and Q2 respectively. The eigenvalues/vectors which were not * deflated go into the first K slots of DLAMDA and Q2 respectively, * while those which were deflated go into the last N - K slots. * DO 110 J = 1, N JP = INDXP( J ) DLAMDA( J ) = D( JP ) PERM( J ) = INDXQ( INDX( JP ) ) CALL CCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 ) 110 CONTINUE * * The deflated eigenvalues and their corresponding vectors go back * into the last N - K slots of D and Q respectively. * IF( K.LT.N ) THEN CALL SCOPY( N-K, DLAMDA( K+1 ), 1, D( K+1 ), 1 ) CALL CLACPY( 'A', QSIZ, N-K, Q2( 1, K+1 ), LDQ2, Q( 1, K+1 ), $ LDQ ) END IF * RETURN * * End of CLAED8 * END |