1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
SUBROUTINE CLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV,
$ SNV, CSQ, SNQ ) * * -- LAPACK auxiliary routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. LOGICAL UPPER REAL A1, A3, B1, B3, CSQ, CSU, CSV COMPLEX A2, B2, SNQ, SNU, SNV * .. * * Purpose * ======= * * CLAGS2 computes 2-by-2 unitary matrices U, V and Q, such * that if ( UPPER ) then * * U**H *A*Q = U**H *( A1 A2 )*Q = ( x 0 ) * ( 0 A3 ) ( x x ) * and * V**H*B*Q = V**H *( B1 B2 )*Q = ( x 0 ) * ( 0 B3 ) ( x x ) * * or if ( .NOT.UPPER ) then * * U**H *A*Q = U**H *( A1 0 )*Q = ( x x ) * ( A2 A3 ) ( 0 x ) * and * V**H *B*Q = V**H *( B1 0 )*Q = ( x x ) * ( B2 B3 ) ( 0 x ) * where * * U = ( CSU SNU ), V = ( CSV SNV ), * ( -SNU**H CSU ) ( -SNV**H CSV ) * * Q = ( CSQ SNQ ) * ( -SNQ**H CSQ ) * * The rows of the transformed A and B are parallel. Moreover, if the * input 2-by-2 matrix A is not zero, then the transformed (1,1) entry * of A is not zero. If the input matrices A and B are both not zero, * then the transformed (2,2) element of B is not zero, except when the * first rows of input A and B are parallel and the second rows are * zero. * * Arguments * ========= * * UPPER (input) LOGICAL * = .TRUE.: the input matrices A and B are upper triangular. * = .FALSE.: the input matrices A and B are lower triangular. * * A1 (input) REAL * A2 (input) COMPLEX * A3 (input) REAL * On entry, A1, A2 and A3 are elements of the input 2-by-2 * upper (lower) triangular matrix A. * * B1 (input) REAL * B2 (input) COMPLEX * B3 (input) REAL * On entry, B1, B2 and B3 are elements of the input 2-by-2 * upper (lower) triangular matrix B. * * CSU (output) REAL * SNU (output) COMPLEX * The desired unitary matrix U. * * CSV (output) REAL * SNV (output) COMPLEX * The desired unitary matrix V. * * CSQ (output) REAL * SNQ (output) COMPLEX * The desired unitary matrix Q. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. REAL A, AUA11, AUA12, AUA21, AUA22, AVB11, AVB12, $ AVB21, AVB22, CSL, CSR, D, FB, FC, S1, S2, SNL, $ SNR, UA11R, UA22R, VB11R, VB22R COMPLEX B, C, D1, R, T, UA11, UA12, UA21, UA22, VB11, $ VB12, VB21, VB22 * .. * .. External Subroutines .. EXTERNAL CLARTG, SLASV2 * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, CMPLX, CONJG, REAL * .. * .. Statement Functions .. REAL ABS1 * .. * .. Statement Function definitions .. ABS1( T ) = ABS( REAL( T ) ) + ABS( AIMAG( T ) ) * .. * .. Executable Statements .. * IF( UPPER ) THEN * * Input matrices A and B are upper triangular matrices * * Form matrix C = A*adj(B) = ( a b ) * ( 0 d ) * A = A1*B3 D = A3*B1 B = A2*B1 - A1*B2 FB = ABS( B ) * * Transform complex 2-by-2 matrix C to real matrix by unitary * diagonal matrix diag(1,D1). * D1 = ONE IF( FB.NE.ZERO ) $ D1 = B / FB * * The SVD of real 2 by 2 triangular C * * ( CSL -SNL )*( A B )*( CSR SNR ) = ( R 0 ) * ( SNL CSL ) ( 0 D ) ( -SNR CSR ) ( 0 T ) * CALL SLASV2( A, FB, D, S1, S2, SNR, CSR, SNL, CSL ) * IF( ABS( CSL ).GE.ABS( SNL ) .OR. ABS( CSR ).GE.ABS( SNR ) ) $ THEN * * Compute the (1,1) and (1,2) elements of U**H *A and V**H *B, * and (1,2) element of |U|**H *|A| and |V|**H *|B|. * UA11R = CSL*A1 UA12 = CSL*A2 + D1*SNL*A3 * VB11R = CSR*B1 VB12 = CSR*B2 + D1*SNR*B3 * AUA12 = ABS( CSL )*ABS1( A2 ) + ABS( SNL )*ABS( A3 ) AVB12 = ABS( CSR )*ABS1( B2 ) + ABS( SNR )*ABS( B3 ) * * zero (1,2) elements of U**H *A and V**H *B * IF( ( ABS( UA11R )+ABS1( UA12 ) ).EQ.ZERO ) THEN CALL CLARTG( -CMPLX( VB11R ), CONJG( VB12 ), CSQ, SNQ, $ R ) ELSE IF( ( ABS( VB11R )+ABS1( VB12 ) ).EQ.ZERO ) THEN CALL CLARTG( -CMPLX( UA11R ), CONJG( UA12 ), CSQ, SNQ, $ R ) ELSE IF( AUA12 / ( ABS( UA11R )+ABS1( UA12 ) ).LE.AVB12 / $ ( ABS( VB11R )+ABS1( VB12 ) ) ) THEN CALL CLARTG( -CMPLX( UA11R ), CONJG( UA12 ), CSQ, SNQ, $ R ) ELSE CALL CLARTG( -CMPLX( VB11R ), CONJG( VB12 ), CSQ, SNQ, $ R ) END IF * CSU = CSL SNU = -D1*SNL CSV = CSR SNV = -D1*SNR * ELSE * * Compute the (2,1) and (2,2) elements of U**H *A and V**H *B, * and (2,2) element of |U|**H *|A| and |V|**H *|B|. * UA21 = -CONJG( D1 )*SNL*A1 UA22 = -CONJG( D1 )*SNL*A2 + CSL*A3 * VB21 = -CONJG( D1 )*SNR*B1 VB22 = -CONJG( D1 )*SNR*B2 + CSR*B3 * AUA22 = ABS( SNL )*ABS1( A2 ) + ABS( CSL )*ABS( A3 ) AVB22 = ABS( SNR )*ABS1( B2 ) + ABS( CSR )*ABS( B3 ) * * zero (2,2) elements of U**H *A and V**H *B, and then swap. * IF( ( ABS1( UA21 )+ABS1( UA22 ) ).EQ.ZERO ) THEN CALL CLARTG( -CONJG( VB21 ), CONJG( VB22 ), CSQ, SNQ, R ) ELSE IF( ( ABS1( VB21 )+ABS( VB22 ) ).EQ.ZERO ) THEN CALL CLARTG( -CONJG( UA21 ), CONJG( UA22 ), CSQ, SNQ, R ) ELSE IF( AUA22 / ( ABS1( UA21 )+ABS1( UA22 ) ).LE.AVB22 / $ ( ABS1( VB21 )+ABS1( VB22 ) ) ) THEN CALL CLARTG( -CONJG( UA21 ), CONJG( UA22 ), CSQ, SNQ, R ) ELSE CALL CLARTG( -CONJG( VB21 ), CONJG( VB22 ), CSQ, SNQ, R ) END IF * CSU = SNL SNU = D1*CSL CSV = SNR SNV = D1*CSR * END IF * ELSE * * Input matrices A and B are lower triangular matrices * * Form matrix C = A*adj(B) = ( a 0 ) * ( c d ) * A = A1*B3 D = A3*B1 C = A2*B3 - A3*B2 FC = ABS( C ) * * Transform complex 2-by-2 matrix C to real matrix by unitary * diagonal matrix diag(d1,1). * D1 = ONE IF( FC.NE.ZERO ) $ D1 = C / FC * * The SVD of real 2 by 2 triangular C * * ( CSL -SNL )*( A 0 )*( CSR SNR ) = ( R 0 ) * ( SNL CSL ) ( C D ) ( -SNR CSR ) ( 0 T ) * CALL SLASV2( A, FC, D, S1, S2, SNR, CSR, SNL, CSL ) * IF( ABS( CSR ).GE.ABS( SNR ) .OR. ABS( CSL ).GE.ABS( SNL ) ) $ THEN * * Compute the (2,1) and (2,2) elements of U**H *A and V**H *B, * and (2,1) element of |U|**H *|A| and |V|**H *|B|. * UA21 = -D1*SNR*A1 + CSR*A2 UA22R = CSR*A3 * VB21 = -D1*SNL*B1 + CSL*B2 VB22R = CSL*B3 * AUA21 = ABS( SNR )*ABS( A1 ) + ABS( CSR )*ABS1( A2 ) AVB21 = ABS( SNL )*ABS( B1 ) + ABS( CSL )*ABS1( B2 ) * * zero (2,1) elements of U**H *A and V**H *B. * IF( ( ABS1( UA21 )+ABS( UA22R ) ).EQ.ZERO ) THEN CALL CLARTG( CMPLX( VB22R ), VB21, CSQ, SNQ, R ) ELSE IF( ( ABS1( VB21 )+ABS( VB22R ) ).EQ.ZERO ) THEN CALL CLARTG( CMPLX( UA22R ), UA21, CSQ, SNQ, R ) ELSE IF( AUA21 / ( ABS1( UA21 )+ABS( UA22R ) ).LE.AVB21 / $ ( ABS1( VB21 )+ABS( VB22R ) ) ) THEN CALL CLARTG( CMPLX( UA22R ), UA21, CSQ, SNQ, R ) ELSE CALL CLARTG( CMPLX( VB22R ), VB21, CSQ, SNQ, R ) END IF * CSU = CSR SNU = -CONJG( D1 )*SNR CSV = CSL SNV = -CONJG( D1 )*SNL * ELSE * * Compute the (1,1) and (1,2) elements of U**H *A and V**H *B, * and (1,1) element of |U|**H *|A| and |V|**H *|B|. * UA11 = CSR*A1 + CONJG( D1 )*SNR*A2 UA12 = CONJG( D1 )*SNR*A3 * VB11 = CSL*B1 + CONJG( D1 )*SNL*B2 VB12 = CONJG( D1 )*SNL*B3 * AUA11 = ABS( CSR )*ABS( A1 ) + ABS( SNR )*ABS1( A2 ) AVB11 = ABS( CSL )*ABS( B1 ) + ABS( SNL )*ABS1( B2 ) * * zero (1,1) elements of U**H *A and V**H *B, and then swap. * IF( ( ABS1( UA11 )+ABS1( UA12 ) ).EQ.ZERO ) THEN CALL CLARTG( VB12, VB11, CSQ, SNQ, R ) ELSE IF( ( ABS1( VB11 )+ABS1( VB12 ) ).EQ.ZERO ) THEN CALL CLARTG( UA12, UA11, CSQ, SNQ, R ) ELSE IF( AUA11 / ( ABS1( UA11 )+ABS1( UA12 ) ).LE.AVB11 / $ ( ABS1( VB11 )+ABS1( VB12 ) ) ) THEN CALL CLARTG( UA12, UA11, CSQ, SNQ, R ) ELSE CALL CLARTG( VB12, VB11, CSQ, SNQ, R ) END IF * CSU = SNR SNU = CONJG( D1 )*CSR CSV = SNL SNV = CONJG( D1 )*CSL * END IF * END IF * RETURN * * End of CLAGS2 * END |