1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
SUBROUTINE CLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
* * -- LAPACK auxiliary routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. INTEGER K, LDA, LDT, LDY, N, NB * .. * .. Array Arguments .. COMPLEX A( LDA, * ), T( LDT, NB ), TAU( NB ), $ Y( LDY, NB ) * .. * * Purpose * ======= * * CLAHRD reduces the first NB columns of a complex general n-by-(n-k+1) * matrix A so that elements below the k-th subdiagonal are zero. The * reduction is performed by a unitary similarity transformation * Q**H * A * Q. The routine returns the matrices V and T which determine * Q as a block reflector I - V*T*V**H, and also the matrix Y = A * V * T. * * This is an OBSOLETE auxiliary routine. * This routine will be 'deprecated' in a future release. * Please use the new routine CLAHR2 instead. * * Arguments * ========= * * N (input) INTEGER * The order of the matrix A. * * K (input) INTEGER * The offset for the reduction. Elements below the k-th * subdiagonal in the first NB columns are reduced to zero. * * NB (input) INTEGER * The number of columns to be reduced. * * A (input/output) COMPLEX array, dimension (LDA,N-K+1) * On entry, the n-by-(n-k+1) general matrix A. * On exit, the elements on and above the k-th subdiagonal in * the first NB columns are overwritten with the corresponding * elements of the reduced matrix; the elements below the k-th * subdiagonal, with the array TAU, represent the matrix Q as a * product of elementary reflectors. The other columns of A are * unchanged. See Further Details. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * TAU (output) COMPLEX array, dimension (NB) * The scalar factors of the elementary reflectors. See Further * Details. * * T (output) COMPLEX array, dimension (LDT,NB) * The upper triangular matrix T. * * LDT (input) INTEGER * The leading dimension of the array T. LDT >= NB. * * Y (output) COMPLEX array, dimension (LDY,NB) * The n-by-nb matrix Y. * * LDY (input) INTEGER * The leading dimension of the array Y. LDY >= max(1,N). * * Further Details * =============== * * The matrix Q is represented as a product of nb elementary reflectors * * Q = H(1) H(2) . . . H(nb). * * Each H(i) has the form * * H(i) = I - tau * v * v**H * * where tau is a complex scalar, and v is a complex vector with * v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in * A(i+k+1:n,i), and tau in TAU(i). * * The elements of the vectors v together form the (n-k+1)-by-nb matrix * V which is needed, with T and Y, to apply the transformation to the * unreduced part of the matrix, using an update of the form: * A := (I - V*T*V**H) * (A - Y*V**H). * * The contents of A on exit are illustrated by the following example * with n = 7, k = 3 and nb = 2: * * ( a h a a a ) * ( a h a a a ) * ( a h a a a ) * ( h h a a a ) * ( v1 h a a a ) * ( v1 v2 a a a ) * ( v1 v2 a a a ) * * where a denotes an element of the original matrix A, h denotes a * modified element of the upper Hessenberg matrix H, and vi denotes an * element of the vector defining H(i). * * ===================================================================== * * .. Parameters .. COMPLEX ZERO, ONE PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ), $ ONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER I COMPLEX EI * .. * .. External Subroutines .. EXTERNAL CAXPY, CCOPY, CGEMV, CLACGV, CLARFG, CSCAL, $ CTRMV * .. * .. Intrinsic Functions .. INTRINSIC MIN * .. * .. Executable Statements .. * * Quick return if possible * IF( N.LE.1 ) $ RETURN * DO 10 I = 1, NB IF( I.GT.1 ) THEN * * Update A(1:n,i) * * Compute i-th column of A - Y * V**H * CALL CLACGV( I-1, A( K+I-1, 1 ), LDA ) CALL CGEMV( 'No transpose', N, I-1, -ONE, Y, LDY, $ A( K+I-1, 1 ), LDA, ONE, A( 1, I ), 1 ) CALL CLACGV( I-1, A( K+I-1, 1 ), LDA ) * * Apply I - V * T**H * V**H to this column (call it b) from the * left, using the last column of T as workspace * * Let V = ( V1 ) and b = ( b1 ) (first I-1 rows) * ( V2 ) ( b2 ) * * where V1 is unit lower triangular * * w := V1**H * b1 * CALL CCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 ) CALL CTRMV( 'Lower', 'Conjugate transpose', 'Unit', I-1, $ A( K+1, 1 ), LDA, T( 1, NB ), 1 ) * * w := w + V2**H *b2 * CALL CGEMV( 'Conjugate transpose', N-K-I+1, I-1, ONE, $ A( K+I, 1 ), LDA, A( K+I, I ), 1, ONE, $ T( 1, NB ), 1 ) * * w := T**H *w * CALL CTRMV( 'Upper', 'Conjugate transpose', 'Non-unit', I-1, $ T, LDT, T( 1, NB ), 1 ) * * b2 := b2 - V2*w * CALL CGEMV( 'No transpose', N-K-I+1, I-1, -ONE, A( K+I, 1 ), $ LDA, T( 1, NB ), 1, ONE, A( K+I, I ), 1 ) * * b1 := b1 - V1*w * CALL CTRMV( 'Lower', 'No transpose', 'Unit', I-1, $ A( K+1, 1 ), LDA, T( 1, NB ), 1 ) CALL CAXPY( I-1, -ONE, T( 1, NB ), 1, A( K+1, I ), 1 ) * A( K+I-1, I-1 ) = EI END IF * * Generate the elementary reflector H(i) to annihilate * A(k+i+1:n,i) * EI = A( K+I, I ) CALL CLARFG( N-K-I+1, EI, A( MIN( K+I+1, N ), I ), 1, $ TAU( I ) ) A( K+I, I ) = ONE * * Compute Y(1:n,i) * CALL CGEMV( 'No transpose', N, N-K-I+1, ONE, A( 1, I+1 ), LDA, $ A( K+I, I ), 1, ZERO, Y( 1, I ), 1 ) CALL CGEMV( 'Conjugate transpose', N-K-I+1, I-1, ONE, $ A( K+I, 1 ), LDA, A( K+I, I ), 1, ZERO, T( 1, I ), $ 1 ) CALL CGEMV( 'No transpose', N, I-1, -ONE, Y, LDY, T( 1, I ), 1, $ ONE, Y( 1, I ), 1 ) CALL CSCAL( N, TAU( I ), Y( 1, I ), 1 ) * * Compute T(1:i,i) * CALL CSCAL( I-1, -TAU( I ), T( 1, I ), 1 ) CALL CTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, LDT, $ T( 1, I ), 1 ) T( I, I ) = TAU( I ) * 10 CONTINUE A( K+NB, NB ) = EI * RETURN * * End of CLAHRD * END |