CLANSB
   November 2006
Purpose
CLANSB  returns the value of the one norm,  or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of an
n by n symmetric band matrix A, with k super-diagonals.
the infinity norm, or the element of largest absolute value of an
n by n symmetric band matrix A, with k super-diagonals.
Description
CLANSB returns the value
CLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
CLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
Arguments
| NORM | 
 
(input) CHARACTER*1
 
Specifies the value to be returned in CLANSB as described 
above.  | 
| UPLO | 
 
(input) CHARACTER*1
 
Specifies whether the upper or lower triangular part of the 
band matrix A is supplied. = 'U': Upper triangular part is supplied = 'L': Lower triangular part is supplied  | 
| N | 
 
(input) INTEGER
 
The order of the matrix A.  N >= 0.  When N = 0, CLANSB is 
set to zero.  | 
| K | 
 
(input) INTEGER
 
The number of super-diagonals or sub-diagonals of the 
band matrix A. K >= 0.  | 
| AB | 
 
(input) COMPLEX array, dimension (LDAB,N)
 
The upper or lower triangle of the symmetric band matrix A, 
stored in the first K+1 rows of AB. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).  | 
| LDAB | 
 
(input) INTEGER
 
The leading dimension of the array AB.  LDAB >= K+1. 
 | 
| WORK | 
 
(workspace) REAL array, dimension (MAX(1,LWORK)),
 
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, 
WORK is not referenced.  |