CLAR1V
Purpose
CLAR1V computes the (scaled) r-th column of the inverse of
the sumbmatrix in rows B1 through BN of the tridiagonal matrix
L D L**T - sigma I. When sigma is close to an eigenvalue, the
computed vector is an accurate eigenvector. Usually, r corresponds
to the index where the eigenvector is largest in magnitude.
The following steps accomplish this computation :
(a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T,
(b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T,
(c) Computation of the diagonal elements of the inverse of
L D L**T - sigma I by combining the above transforms, and choosing
r as the index where the diagonal of the inverse is (one of the)
largest in magnitude.
(d) Computation of the (scaled) r-th column of the inverse using the
twisted factorization obtained by combining the top part of the
the stationary and the bottom part of the progressive transform.
the sumbmatrix in rows B1 through BN of the tridiagonal matrix
L D L**T - sigma I. When sigma is close to an eigenvalue, the
computed vector is an accurate eigenvector. Usually, r corresponds
to the index where the eigenvector is largest in magnitude.
The following steps accomplish this computation :
(a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T,
(b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T,
(c) Computation of the diagonal elements of the inverse of
L D L**T - sigma I by combining the above transforms, and choosing
r as the index where the diagonal of the inverse is (one of the)
largest in magnitude.
(d) Computation of the (scaled) r-th column of the inverse using the
twisted factorization obtained by combining the top part of the
the stationary and the bottom part of the progressive transform.
Arguments
| N | 
 
(input) INTEGER
 
The order of the matrix L D L**T. 
 | 
| B1 | 
 
(input) INTEGER
 
First index of the submatrix of L D L**T. 
 | 
| BN | 
 
(input) INTEGER
 
Last index of the submatrix of L D L**T. 
 | 
| LAMBDA | 
 
(input) REAL
 
The shift. In order to compute an accurate eigenvector, 
LAMBDA should be a good approximation to an eigenvalue of L D L**T.  | 
| L | 
 
(input) REAL array, dimension (N-1)
 
The (n-1) subdiagonal elements of the unit bidiagonal matrix 
L, in elements 1 to N-1.  | 
| D | 
 
(input) REAL array, dimension (N)
 
The n diagonal elements of the diagonal matrix D. 
 | 
| LD | 
 
(input) REAL array, dimension (N-1)
 
The n-1 elements L(i)*D(i). 
 | 
| LLD | 
 
(input) REAL array, dimension (N-1)
 
The n-1 elements L(i)*L(i)*D(i). 
 | 
| PIVMIN | 
 
(input) REAL
 
The minimum pivot in the Sturm sequence. 
 | 
| GAPTOL | 
 
(input) REAL
 
Tolerance that indicates when eigenvector entries are negligible 
w.r.t. their contribution to the residual.  | 
| Z | 
 
(input/output) COMPLEX array, dimension (N)
 
On input, all entries of Z must be set to 0. 
On output, Z contains the (scaled) r-th column of the inverse. The scaling is such that Z(R) equals 1.  | 
| WANTNC | 
 
(input) LOGICAL
 
Specifies whether NEGCNT has to be computed. 
 | 
| NEGCNT | 
 
(output) INTEGER
 
If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin 
in the matrix factorization L D L**T, and NEGCNT = -1 otherwise.  | 
| ZTZ | 
 
(output) REAL
 
The square of the 2-norm of Z. 
 | 
| MINGMA | 
 
(output) REAL
 
The reciprocal of the largest (in magnitude) diagonal 
element of the inverse of L D L**T - sigma I.  | 
| R | 
 
(input/output) INTEGER
 
The twist index for the twisted factorization used to 
compute Z. On input, 0 <= R <= N. If R is input as 0, R is set to the index where (L D L**T - sigma I)^{-1} is largest in magnitude. If 1 <= R <= N, R is unchanged. On output, R contains the twist index used to compute Z. Ideally, R designates the position of the maximum entry in the eigenvector.  | 
| ISUPPZ | 
 
(output) INTEGER array, dimension (2)
 
The support of the vector in Z, i.e., the vector Z is 
nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ).  | 
| NRMINV | 
 
(output) REAL
 
NRMINV = 1/SQRT( ZTZ ) 
 | 
| RESID | 
 
(output) REAL
 
The residual of the FP vector. 
RESID = ABS( MINGMA )/SQRT( ZTZ )  | 
| RQCORR | 
 
(output) REAL
 
The Rayleigh Quotient correction to LAMBDA. 
RQCORR = MINGMA*TMP  | 
| WORK | 
 
(workspace) REAL array, dimension (4*N)
 
 | 
Further Details
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA