1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
SUBROUTINE CLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )
IMPLICIT NONE * * -- LAPACK auxiliary routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER SIDE INTEGER INCV, LDC, M, N COMPLEX TAU * .. * .. Array Arguments .. COMPLEX C( LDC, * ), V( * ), WORK( * ) * .. * * Purpose * ======= * * CLARF applies a complex elementary reflector H to a complex M-by-N * matrix C, from either the left or the right. H is represented in the * form * * H = I - tau * v * v**H * * where tau is a complex scalar and v is a complex vector. * * If tau = 0, then H is taken to be the unit matrix. * * To apply H**H (the conjugate transpose of H), supply conjg(tau) instead * tau. * * Arguments * ========= * * SIDE (input) CHARACTER*1 * = 'L': form H * C * = 'R': form C * H * * M (input) INTEGER * The number of rows of the matrix C. * * N (input) INTEGER * The number of columns of the matrix C. * * V (input) COMPLEX array, dimension * (1 + (M-1)*abs(INCV)) if SIDE = 'L' * or (1 + (N-1)*abs(INCV)) if SIDE = 'R' * The vector v in the representation of H. V is not used if * TAU = 0. * * INCV (input) INTEGER * The increment between elements of v. INCV <> 0. * * TAU (input) COMPLEX * The value tau in the representation of H. * * C (input/output) COMPLEX array, dimension (LDC,N) * On entry, the M-by-N matrix C. * On exit, C is overwritten by the matrix H * C if SIDE = 'L', * or C * H if SIDE = 'R'. * * LDC (input) INTEGER * The leading dimension of the array C. LDC >= max(1,M). * * WORK (workspace) COMPLEX array, dimension * (N) if SIDE = 'L' * or (M) if SIDE = 'R' * * ===================================================================== * * .. Parameters .. COMPLEX ONE, ZERO PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ), $ ZERO = ( 0.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. LOGICAL APPLYLEFT INTEGER I, LASTV, LASTC * .. * .. External Subroutines .. EXTERNAL CGEMV, CGERC * .. * .. External Functions .. LOGICAL LSAME INTEGER ILACLR, ILACLC EXTERNAL LSAME, ILACLR, ILACLC * .. * .. Executable Statements .. * APPLYLEFT = LSAME( SIDE, 'L' ) LASTV = 0 LASTC = 0 IF( TAU.NE.ZERO ) THEN ! Set up variables for scanning V. LASTV begins pointing to the end ! of V. IF( APPLYLEFT ) THEN LASTV = M ELSE LASTV = N END IF IF( INCV.GT.0 ) THEN I = 1 + (LASTV-1) * INCV ELSE I = 1 END IF ! Look for the last non-zero row in V. DO WHILE( LASTV.GT.0 .AND. V( I ).EQ.ZERO ) LASTV = LASTV - 1 I = I - INCV END DO IF( APPLYLEFT ) THEN ! Scan for the last non-zero column in C(1:lastv,:). LASTC = ILACLC(LASTV, N, C, LDC) ELSE ! Scan for the last non-zero row in C(:,1:lastv). LASTC = ILACLR(M, LASTV, C, LDC) END IF END IF ! Note that lastc.eq.0 renders the BLAS operations null; no special ! case is needed at this level. IF( APPLYLEFT ) THEN * * Form H * C * IF( LASTV.GT.0 ) THEN * * w(1:lastc,1) := C(1:lastv,1:lastc)**H * v(1:lastv,1) * CALL CGEMV( 'Conjugate transpose', LASTV, LASTC, ONE, $ C, LDC, V, INCV, ZERO, WORK, 1 ) * * C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)**H * CALL CGERC( LASTV, LASTC, -TAU, V, INCV, WORK, 1, C, LDC ) END IF ELSE * * Form C * H * IF( LASTV.GT.0 ) THEN * * w(1:lastc,1) := C(1:lastc,1:lastv) * v(1:lastv,1) * CALL CGEMV( 'No transpose', LASTC, LASTV, ONE, C, LDC, $ V, INCV, ZERO, WORK, 1 ) * * C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)**H * CALL CGERC( LASTC, LASTV, -TAU, WORK, 1, V, INCV, C, LDC ) END IF END IF RETURN * * End of CLARF * END |