CLARZ
Purpose
CLARZ applies a complex elementary reflector H to a complex
M-by-N matrix C, from either the left or the right. H is represented
in the form
H = I - tau * v * v**H
where tau is a complex scalar and v is a complex vector.
If tau = 0, then H is taken to be the unit matrix.
To apply H**H (the conjugate transpose of H), supply conjg(tau) instead
tau.
H is a product of k elementary reflectors as returned by CTZRZF.
M-by-N matrix C, from either the left or the right. H is represented
in the form
H = I - tau * v * v**H
where tau is a complex scalar and v is a complex vector.
If tau = 0, then H is taken to be the unit matrix.
To apply H**H (the conjugate transpose of H), supply conjg(tau) instead
tau.
H is a product of k elementary reflectors as returned by CTZRZF.
Arguments
| SIDE | 
 
(input) CHARACTER*1
 
= 'L': form  H * C 
= 'R': form C * H  | 
| M | 
 
(input) INTEGER
 
The number of rows of the matrix C. 
 | 
| N | 
 
(input) INTEGER
 
The number of columns of the matrix C. 
 | 
| L | 
 
(input) INTEGER
 
The number of entries of the vector V containing 
the meaningful part of the Householder vectors. If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.  | 
| V | 
 
(input) COMPLEX array, dimension (1+(L-1)*abs(INCV))
 
The vector v in the representation of H as returned by 
CTZRZF. V is not used if TAU = 0.  | 
| INCV | 
 
(input) INTEGER
 
The increment between elements of v. INCV <> 0. 
 | 
| TAU | 
 
(input) COMPLEX
 
The value tau in the representation of H. 
 | 
| C | 
 
(input/output) COMPLEX array, dimension (LDC,N)
 
On entry, the M-by-N matrix C. 
On exit, C is overwritten by the matrix H * C if SIDE = 'L', or C * H if SIDE = 'R'.  | 
| LDC | 
 
(input) INTEGER
 
The leading dimension of the array C. LDC >= max(1,M). 
 | 
| WORK | 
 
(workspace) COMPLEX array, dimension
 
               (N) if SIDE = 'L' 
or (M) if SIDE = 'R'  | 
Further Details
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA