1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
SUBROUTINE CPPTRI( UPLO, N, AP, INFO )
* * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, N * .. * .. Array Arguments .. COMPLEX AP( * ) * .. * * Purpose * ======= * * CPPTRI computes the inverse of a complex Hermitian positive definite * matrix A using the Cholesky factorization A = U**H*U or A = L*L**H * computed by CPPTRF. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangular factor is stored in AP; * = 'L': Lower triangular factor is stored in AP. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * AP (input/output) COMPLEX array, dimension (N*(N+1)/2) * On entry, the triangular factor U or L from the Cholesky * factorization A = U**H*U or A = L*L**H, packed columnwise as * a linear array. The j-th column of U or L is stored in the * array AP as follows: * if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. * * On exit, the upper or lower triangle of the (Hermitian) * inverse of A, overwriting the input factor U or L. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, the (i,i) element of the factor U or L is * zero, and the inverse could not be computed. * * ===================================================================== * * .. Parameters .. REAL ONE PARAMETER ( ONE = 1.0E+0 ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER J, JC, JJ, JJN REAL AJJ * .. * .. External Functions .. LOGICAL LSAME COMPLEX CDOTC EXTERNAL LSAME, CDOTC * .. * .. External Subroutines .. EXTERNAL CHPR, CSSCAL, CTPMV, CTPTRI, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC REAL * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CPPTRI', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Invert the triangular Cholesky factor U or L. * CALL CTPTRI( UPLO, 'Non-unit', N, AP, INFO ) IF( INFO.GT.0 ) $ RETURN IF( UPPER ) THEN * * Compute the product inv(U) * inv(U)**H. * JJ = 0 DO 10 J = 1, N JC = JJ + 1 JJ = JJ + J IF( J.GT.1 ) $ CALL CHPR( 'Upper', J-1, ONE, AP( JC ), 1, AP ) AJJ = AP( JJ ) CALL CSSCAL( J, AJJ, AP( JC ), 1 ) 10 CONTINUE * ELSE * * Compute the product inv(L)**H * inv(L). * JJ = 1 DO 20 J = 1, N JJN = JJ + N - J + 1 AP( JJ ) = REAL( CDOTC( N-J+1, AP( JJ ), 1, AP( JJ ), 1 ) ) IF( J.LT.N ) $ CALL CTPMV( 'Lower', 'Conjugate transpose', 'Non-unit', $ N-J, AP( JJN ), AP( JJ+1 ), 1 ) JJ = JJN 20 CONTINUE END IF * RETURN * * End of CPPTRI * END |