1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
SUBROUTINE CPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
* * -- LAPACK routine (version 3.2.2) -- * Craig Lucas, University of Manchester / NAG Ltd. * October, 2008 * * .. Scalar Arguments .. REAL TOL INTEGER INFO, LDA, N, RANK CHARACTER UPLO * .. * .. Array Arguments .. COMPLEX A( LDA, * ) REAL WORK( 2*N ) INTEGER PIV( N ) * .. * * Purpose * ======= * * CPSTRF computes the Cholesky factorization with complete * pivoting of a complex Hermitian positive semidefinite matrix A. * * The factorization has the form * P**T * A * P = U**H * U , if UPLO = 'U', * P**T * A * P = L * L**H, if UPLO = 'L', * where U is an upper triangular matrix and L is lower triangular, and * P is stored as vector PIV. * * This algorithm does not attempt to check that A is positive * semidefinite. This version of the algorithm calls level 3 BLAS. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * symmetric matrix A is stored. * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input/output) COMPLEX array, dimension (LDA,N) * On entry, the symmetric matrix A. If UPLO = 'U', the leading * n by n upper triangular part of A contains the upper * triangular part of the matrix A, and the strictly lower * triangular part of A is not referenced. If UPLO = 'L', the * leading n by n lower triangular part of A contains the lower * triangular part of the matrix A, and the strictly upper * triangular part of A is not referenced. * * On exit, if INFO = 0, the factor U or L from the Cholesky * factorization as above. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * PIV (output) INTEGER array, dimension (N) * PIV is such that the nonzero entries are P( PIV(K), K ) = 1. * * RANK (output) INTEGER * The rank of A given by the number of steps the algorithm * completed. * * TOL (input) REAL * User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) ) * will be used. The algorithm terminates at the (K-1)st step * if the pivot <= TOL. * * WORK (workspace) REAL array, dimension (2*N) * Work space. * * INFO (output) INTEGER * < 0: If INFO = -K, the K-th argument had an illegal value, * = 0: algorithm completed successfully, and * > 0: the matrix A is either rank deficient with computed rank * as returned in RANK, or is indefinite. See Section 7 of * LAPACK Working Note #161 for further information. * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) COMPLEX CONE PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. COMPLEX CTEMP REAL AJJ, SSTOP, STEMP INTEGER I, ITEMP, J, JB, K, NB, PVT LOGICAL UPPER * .. * .. External Functions .. REAL SLAMCH INTEGER ILAENV LOGICAL LSAME, SISNAN EXTERNAL SLAMCH, ILAENV, LSAME, SISNAN * .. * .. External Subroutines .. EXTERNAL CGEMV, CHERK, CLACGV, CPSTF2, CSSCAL, CSWAP, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG, MAX, MIN, REAL, SQRT, MAXLOC * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CPSTRF', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Get block size * NB = ILAENV( 1, 'CPOTRF', UPLO, N, -1, -1, -1 ) IF( NB.LE.1 .OR. NB.GE.N ) THEN * * Use unblocked code * CALL CPSTF2( UPLO, N, A( 1, 1 ), LDA, PIV, RANK, TOL, WORK, $ INFO ) GO TO 230 * ELSE * * Initialize PIV * DO 100 I = 1, N PIV( I ) = I 100 CONTINUE * * Compute stopping value * DO 110 I = 1, N WORK( I ) = REAL( A( I, I ) ) 110 CONTINUE PVT = MAXLOC( WORK( 1:N ), 1 ) AJJ = REAL( A( PVT, PVT ) ) IF( AJJ.EQ.ZERO.OR.SISNAN( AJJ ) ) THEN RANK = 0 INFO = 1 GO TO 230 END IF * * Compute stopping value if not supplied * IF( TOL.LT.ZERO ) THEN SSTOP = N * SLAMCH( 'Epsilon' ) * AJJ ELSE SSTOP = TOL END IF * * IF( UPPER ) THEN * * Compute the Cholesky factorization P**T * A * P = U**H * U * DO 160 K = 1, N, NB * * Account for last block not being NB wide * JB = MIN( NB, N-K+1 ) * * Set relevant part of first half of WORK to zero, * holds dot products * DO 120 I = K, N WORK( I ) = 0 120 CONTINUE * DO 150 J = K, K + JB - 1 * * Find pivot, test for exit, else swap rows and columns * Update dot products, compute possible pivots which are * stored in the second half of WORK * DO 130 I = J, N * IF( J.GT.K ) THEN WORK( I ) = WORK( I ) + $ REAL( CONJG( A( J-1, I ) )* $ A( J-1, I ) ) END IF WORK( N+I ) = REAL( A( I, I ) ) - WORK( I ) * 130 CONTINUE * IF( J.GT.1 ) THEN ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 ) PVT = ITEMP + J - 1 AJJ = WORK( N+PVT ) IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN A( J, J ) = AJJ GO TO 220 END IF END IF * IF( J.NE.PVT ) THEN * * Pivot OK, so can now swap pivot rows and columns * A( PVT, PVT ) = A( J, J ) CALL CSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 ) IF( PVT.LT.N ) $ CALL CSWAP( N-PVT, A( J, PVT+1 ), LDA, $ A( PVT, PVT+1 ), LDA ) DO 140 I = J + 1, PVT - 1 CTEMP = CONJG( A( J, I ) ) A( J, I ) = CONJG( A( I, PVT ) ) A( I, PVT ) = CTEMP 140 CONTINUE A( J, PVT ) = CONJG( A( J, PVT ) ) * * Swap dot products and PIV * STEMP = WORK( J ) WORK( J ) = WORK( PVT ) WORK( PVT ) = STEMP ITEMP = PIV( PVT ) PIV( PVT ) = PIV( J ) PIV( J ) = ITEMP END IF * AJJ = SQRT( AJJ ) A( J, J ) = AJJ * * Compute elements J+1:N of row J. * IF( J.LT.N ) THEN CALL CLACGV( J-1, A( 1, J ), 1 ) CALL CGEMV( 'Trans', J-K, N-J, -CONE, A( K, J+1 ), $ LDA, A( K, J ), 1, CONE, A( J, J+1 ), $ LDA ) CALL CLACGV( J-1, A( 1, J ), 1 ) CALL CSSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA ) END IF * 150 CONTINUE * * Update trailing matrix, J already incremented * IF( K+JB.LE.N ) THEN CALL CHERK( 'Upper', 'Conj Trans', N-J+1, JB, -ONE, $ A( K, J ), LDA, ONE, A( J, J ), LDA ) END IF * 160 CONTINUE * ELSE * * Compute the Cholesky factorization P**T * A * P = L * L**H * DO 210 K = 1, N, NB * * Account for last block not being NB wide * JB = MIN( NB, N-K+1 ) * * Set relevant part of first half of WORK to zero, * holds dot products * DO 170 I = K, N WORK( I ) = 0 170 CONTINUE * DO 200 J = K, K + JB - 1 * * Find pivot, test for exit, else swap rows and columns * Update dot products, compute possible pivots which are * stored in the second half of WORK * DO 180 I = J, N * IF( J.GT.K ) THEN WORK( I ) = WORK( I ) + $ REAL( CONJG( A( I, J-1 ) )* $ A( I, J-1 ) ) END IF WORK( N+I ) = REAL( A( I, I ) ) - WORK( I ) * 180 CONTINUE * IF( J.GT.1 ) THEN ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 ) PVT = ITEMP + J - 1 AJJ = WORK( N+PVT ) IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN A( J, J ) = AJJ GO TO 220 END IF END IF * IF( J.NE.PVT ) THEN * * Pivot OK, so can now swap pivot rows and columns * A( PVT, PVT ) = A( J, J ) CALL CSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA ) IF( PVT.LT.N ) $ CALL CSWAP( N-PVT, A( PVT+1, J ), 1, $ A( PVT+1, PVT ), 1 ) DO 190 I = J + 1, PVT - 1 CTEMP = CONJG( A( I, J ) ) A( I, J ) = CONJG( A( PVT, I ) ) A( PVT, I ) = CTEMP 190 CONTINUE A( PVT, J ) = CONJG( A( PVT, J ) ) * * Swap dot products and PIV * STEMP = WORK( J ) WORK( J ) = WORK( PVT ) WORK( PVT ) = STEMP ITEMP = PIV( PVT ) PIV( PVT ) = PIV( J ) PIV( J ) = ITEMP END IF * AJJ = SQRT( AJJ ) A( J, J ) = AJJ * * Compute elements J+1:N of column J. * IF( J.LT.N ) THEN CALL CLACGV( J-1, A( J, 1 ), LDA ) CALL CGEMV( 'No Trans', N-J, J-K, -CONE, $ A( J+1, K ), LDA, A( J, K ), LDA, CONE, $ A( J+1, J ), 1 ) CALL CLACGV( J-1, A( J, 1 ), LDA ) CALL CSSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 ) END IF * 200 CONTINUE * * Update trailing matrix, J already incremented * IF( K+JB.LE.N ) THEN CALL CHERK( 'Lower', 'No Trans', N-J+1, JB, -ONE, $ A( J, K ), LDA, ONE, A( J, J ), LDA ) END IF * 210 CONTINUE * END IF END IF * * Ran to completion, A has full rank * RANK = N * GO TO 230 220 CONTINUE * * Rank is the number of steps completed. Set INFO = 1 to signal * that the factorization cannot be used to solve a system. * RANK = J - 1 INFO = 1 * 230 CONTINUE RETURN * * End of CPSTRF * END |