1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
SUBROUTINE CPTTRF( N, D, E, INFO )
* * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. INTEGER INFO, N * .. * .. Array Arguments .. REAL D( * ) COMPLEX E( * ) * .. * * Purpose * ======= * * CPTTRF computes the L*D*L**H factorization of a complex Hermitian * positive definite tridiagonal matrix A. The factorization may also * be regarded as having the form A = U**H *D*U. * * Arguments * ========= * * N (input) INTEGER * The order of the matrix A. N >= 0. * * D (input/output) REAL array, dimension (N) * On entry, the n diagonal elements of the tridiagonal matrix * A. On exit, the n diagonal elements of the diagonal matrix * D from the L*D*L**H factorization of A. * * E (input/output) COMPLEX array, dimension (N-1) * On entry, the (n-1) subdiagonal elements of the tridiagonal * matrix A. On exit, the (n-1) subdiagonal elements of the * unit bidiagonal factor L from the L*D*L**H factorization of A. * E can also be regarded as the superdiagonal of the unit * bidiagonal factor U from the U**H *D*U factorization of A. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -k, the k-th argument had an illegal value * > 0: if INFO = k, the leading minor of order k is not * positive definite; if k < N, the factorization could not * be completed, while if k = N, the factorization was * completed, but D(N) <= 0. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER I, I4 REAL EII, EIR, F, G * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC AIMAG, CMPLX, MOD, REAL * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF( N.LT.0 ) THEN INFO = -1 CALL XERBLA( 'CPTTRF', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Compute the L*D*L**H (or U**H *D*U) factorization of A. * I4 = MOD( N-1, 4 ) DO 10 I = 1, I4 IF( D( I ).LE.ZERO ) THEN INFO = I GO TO 20 END IF EIR = REAL( E( I ) ) EII = AIMAG( E( I ) ) F = EIR / D( I ) G = EII / D( I ) E( I ) = CMPLX( F, G ) D( I+1 ) = D( I+1 ) - F*EIR - G*EII 10 CONTINUE * DO 110 I = I4+1, N - 4, 4 * * Drop out of the loop if d(i) <= 0: the matrix is not positive * definite. * IF( D( I ).LE.ZERO ) THEN INFO = I GO TO 20 END IF * * Solve for e(i) and d(i+1). * EIR = REAL( E( I ) ) EII = AIMAG( E( I ) ) F = EIR / D( I ) G = EII / D( I ) E( I ) = CMPLX( F, G ) D( I+1 ) = D( I+1 ) - F*EIR - G*EII * IF( D( I+1 ).LE.ZERO ) THEN INFO = I+1 GO TO 20 END IF * * Solve for e(i+1) and d(i+2). * EIR = REAL( E( I+1 ) ) EII = AIMAG( E( I+1 ) ) F = EIR / D( I+1 ) G = EII / D( I+1 ) E( I+1 ) = CMPLX( F, G ) D( I+2 ) = D( I+2 ) - F*EIR - G*EII * IF( D( I+2 ).LE.ZERO ) THEN INFO = I+2 GO TO 20 END IF * * Solve for e(i+2) and d(i+3). * EIR = REAL( E( I+2 ) ) EII = AIMAG( E( I+2 ) ) F = EIR / D( I+2 ) G = EII / D( I+2 ) E( I+2 ) = CMPLX( F, G ) D( I+3 ) = D( I+3 ) - F*EIR - G*EII * IF( D( I+3 ).LE.ZERO ) THEN INFO = I+3 GO TO 20 END IF * * Solve for e(i+3) and d(i+4). * EIR = REAL( E( I+3 ) ) EII = AIMAG( E( I+3 ) ) F = EIR / D( I+3 ) G = EII / D( I+3 ) E( I+3 ) = CMPLX( F, G ) D( I+4 ) = D( I+4 ) - F*EIR - G*EII 110 CONTINUE * * Check d(n) for positive definiteness. * IF( D( N ).LE.ZERO ) $ INFO = N * 20 CONTINUE RETURN * * End of CPTTRF * END |