1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
SUBROUTINE CPTTS2( IUPLO, N, NRHS, D, E, B, LDB )
* * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. INTEGER IUPLO, LDB, N, NRHS * .. * .. Array Arguments .. REAL D( * ) COMPLEX B( LDB, * ), E( * ) * .. * * Purpose * ======= * * CPTTS2 solves a tridiagonal system of the form * A * X = B * using the factorization A = U**H*D*U or A = L*D*L**H computed by CPTTRF. * D is a diagonal matrix specified in the vector D, U (or L) is a unit * bidiagonal matrix whose superdiagonal (subdiagonal) is specified in * the vector E, and X and B are N by NRHS matrices. * * Arguments * ========= * * IUPLO (input) INTEGER * Specifies the form of the factorization and whether the * vector E is the superdiagonal of the upper bidiagonal factor * U or the subdiagonal of the lower bidiagonal factor L. * = 1: A = U**H *D*U, E is the superdiagonal of U * = 0: A = L*D*L**H, E is the subdiagonal of L * * N (input) INTEGER * The order of the tridiagonal matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * D (input) REAL array, dimension (N) * The n diagonal elements of the diagonal matrix D from the * factorization A = U**H *D*U or A = L*D*L**H. * * E (input) COMPLEX array, dimension (N-1) * If IUPLO = 1, the (n-1) superdiagonal elements of the unit * bidiagonal factor U from the factorization A = U**H*D*U. * If IUPLO = 0, the (n-1) subdiagonal elements of the unit * bidiagonal factor L from the factorization A = L*D*L**H. * * B (input/output) REAL array, dimension (LDB,NRHS) * On entry, the right hand side vectors B for the system of * linear equations. * On exit, the solution vectors, X. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * ===================================================================== * * .. Local Scalars .. INTEGER I, J * .. * .. External Subroutines .. EXTERNAL CSSCAL * .. * .. Intrinsic Functions .. INTRINSIC CONJG * .. * .. Executable Statements .. * * Quick return if possible * IF( N.LE.1 ) THEN IF( N.EQ.1 ) $ CALL CSSCAL( NRHS, 1. / D( 1 ), B, LDB ) RETURN END IF * IF( IUPLO.EQ.1 ) THEN * * Solve A * X = B using the factorization A = U**H *D*U, * overwriting each right hand side vector with its solution. * IF( NRHS.LE.2 ) THEN J = 1 5 CONTINUE * * Solve U**H * x = b. * DO 10 I = 2, N B( I, J ) = B( I, J ) - B( I-1, J )*CONJG( E( I-1 ) ) 10 CONTINUE * * Solve D * U * x = b. * DO 20 I = 1, N B( I, J ) = B( I, J ) / D( I ) 20 CONTINUE DO 30 I = N - 1, 1, -1 B( I, J ) = B( I, J ) - B( I+1, J )*E( I ) 30 CONTINUE IF( J.LT.NRHS ) THEN J = J + 1 GO TO 5 END IF ELSE DO 60 J = 1, NRHS * * Solve U**H * x = b. * DO 40 I = 2, N B( I, J ) = B( I, J ) - B( I-1, J )*CONJG( E( I-1 ) ) 40 CONTINUE * * Solve D * U * x = b. * B( N, J ) = B( N, J ) / D( N ) DO 50 I = N - 1, 1, -1 B( I, J ) = B( I, J ) / D( I ) - B( I+1, J )*E( I ) 50 CONTINUE 60 CONTINUE END IF ELSE * * Solve A * X = B using the factorization A = L*D*L**H, * overwriting each right hand side vector with its solution. * IF( NRHS.LE.2 ) THEN J = 1 65 CONTINUE * * Solve L * x = b. * DO 70 I = 2, N B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 ) 70 CONTINUE * * Solve D * L**H * x = b. * DO 80 I = 1, N B( I, J ) = B( I, J ) / D( I ) 80 CONTINUE DO 90 I = N - 1, 1, -1 B( I, J ) = B( I, J ) - B( I+1, J )*CONJG( E( I ) ) 90 CONTINUE IF( J.LT.NRHS ) THEN J = J + 1 GO TO 65 END IF ELSE DO 120 J = 1, NRHS * * Solve L * x = b. * DO 100 I = 2, N B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 ) 100 CONTINUE * * Solve D * L**H * x = b. * B( N, J ) = B( N, J ) / D( N ) DO 110 I = N - 1, 1, -1 B( I, J ) = B( I, J ) / D( I ) - $ B( I+1, J )*CONJG( E( I ) ) 110 CONTINUE 120 CONTINUE END IF END IF * RETURN * * End of CPTTS2 * END |