1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
SUBROUTINE CSPR( UPLO, N, ALPHA, X, INCX, AP )
* * -- LAPACK auxiliary routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INCX, N COMPLEX ALPHA * .. * .. Array Arguments .. COMPLEX AP( * ), X( * ) * .. * * Purpose * ======= * * CSPR performs the symmetric rank 1 operation * * A := alpha*x*x**H + A, * * where alpha is a complex scalar, x is an n element vector and A is an * n by n symmetric matrix, supplied in packed form. * * Arguments * ========== * * UPLO (input) CHARACTER*1 * On entry, UPLO specifies whether the upper or lower * triangular part of the matrix A is supplied in the packed * array AP as follows: * * UPLO = 'U' or 'u' The upper triangular part of A is * supplied in AP. * * UPLO = 'L' or 'l' The lower triangular part of A is * supplied in AP. * * Unchanged on exit. * * N (input) INTEGER * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA (input) COMPLEX * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X (input) COMPLEX array, dimension at least * ( 1 + ( N - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the N- * element vector x. * Unchanged on exit. * * INCX (input) INTEGER * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * AP (input/output) COMPLEX array, dimension at least * ( ( N*( N + 1 ) )/2 ). * Before entry, with UPLO = 'U' or 'u', the array AP must * contain the upper triangular part of the symmetric matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) * and a( 2, 2 ) respectively, and so on. On exit, the array * AP is overwritten by the upper triangular part of the * updated matrix. * Before entry, with UPLO = 'L' or 'l', the array AP must * contain the lower triangular part of the symmetric matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) * and a( 3, 1 ) respectively, and so on. On exit, the array * AP is overwritten by the lower triangular part of the * updated matrix. * Note that the imaginary parts of the diagonal elements need * not be set, they are assumed to be zero, and on exit they * are set to zero. * * ===================================================================== * * .. Parameters .. COMPLEX ZERO PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER I, INFO, IX, J, JX, K, KK, KX COMPLEX TEMP * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = 1 ELSE IF( N.LT.0 ) THEN INFO = 2 ELSE IF( INCX.EQ.0 ) THEN INFO = 5 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CSPR ', INFO ) RETURN END IF * * Quick return if possible. * IF( ( N.EQ.0 ) .OR. ( ALPHA.EQ.ZERO ) ) $ RETURN * * Set the start point in X if the increment is not unity. * IF( INCX.LE.0 ) THEN KX = 1 - ( N-1 )*INCX ELSE IF( INCX.NE.1 ) THEN KX = 1 END IF * * Start the operations. In this version the elements of the array AP * are accessed sequentially with one pass through AP. * KK = 1 IF( LSAME( UPLO, 'U' ) ) THEN * * Form A when upper triangle is stored in AP. * IF( INCX.EQ.1 ) THEN DO 20 J = 1, N IF( X( J ).NE.ZERO ) THEN TEMP = ALPHA*X( J ) K = KK DO 10 I = 1, J - 1 AP( K ) = AP( K ) + X( I )*TEMP K = K + 1 10 CONTINUE AP( KK+J-1 ) = AP( KK+J-1 ) + X( J )*TEMP ELSE AP( KK+J-1 ) = AP( KK+J-1 ) END IF KK = KK + J 20 CONTINUE ELSE JX = KX DO 40 J = 1, N IF( X( JX ).NE.ZERO ) THEN TEMP = ALPHA*X( JX ) IX = KX DO 30 K = KK, KK + J - 2 AP( K ) = AP( K ) + X( IX )*TEMP IX = IX + INCX 30 CONTINUE AP( KK+J-1 ) = AP( KK+J-1 ) + X( JX )*TEMP ELSE AP( KK+J-1 ) = AP( KK+J-1 ) END IF JX = JX + INCX KK = KK + J 40 CONTINUE END IF ELSE * * Form A when lower triangle is stored in AP. * IF( INCX.EQ.1 ) THEN DO 60 J = 1, N IF( X( J ).NE.ZERO ) THEN TEMP = ALPHA*X( J ) AP( KK ) = AP( KK ) + TEMP*X( J ) K = KK + 1 DO 50 I = J + 1, N AP( K ) = AP( K ) + X( I )*TEMP K = K + 1 50 CONTINUE ELSE AP( KK ) = AP( KK ) END IF KK = KK + N - J + 1 60 CONTINUE ELSE JX = KX DO 80 J = 1, N IF( X( JX ).NE.ZERO ) THEN TEMP = ALPHA*X( JX ) AP( KK ) = AP( KK ) + TEMP*X( JX ) IX = JX DO 70 K = KK + 1, KK + N - J IX = IX + INCX AP( K ) = AP( K ) + X( IX )*TEMP 70 CONTINUE ELSE AP( KK ) = AP( KK ) END IF JX = JX + INCX KK = KK + N - J + 1 80 CONTINUE END IF END IF * RETURN * * End of CSPR * END |