1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
SUBROUTINE CSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
$ X, LDX, FERR, BERR, WORK, RWORK, INFO ) * * -- LAPACK routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH. * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS * .. * .. Array Arguments .. INTEGER IPIV( * ) REAL BERR( * ), FERR( * ), RWORK( * ) COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ), $ WORK( * ), X( LDX, * ) * .. * * Purpose * ======= * * CSYRFS improves the computed solution to a system of linear * equations when the coefficient matrix is symmetric indefinite, and * provides error bounds and backward error estimates for the solution. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrices B and X. NRHS >= 0. * * A (input) COMPLEX array, dimension (LDA,N) * The symmetric matrix A. If UPLO = 'U', the leading N-by-N * upper triangular part of A contains the upper triangular part * of the matrix A, and the strictly lower triangular part of A * is not referenced. If UPLO = 'L', the leading N-by-N lower * triangular part of A contains the lower triangular part of * the matrix A, and the strictly upper triangular part of A is * not referenced. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * AF (input) COMPLEX array, dimension (LDAF,N) * The factored form of the matrix A. AF contains the block * diagonal matrix D and the multipliers used to obtain the * factor U or L from the factorization A = U*D*U**T or * A = L*D*L**T as computed by CSYTRF. * * LDAF (input) INTEGER * The leading dimension of the array AF. LDAF >= max(1,N). * * IPIV (input) INTEGER array, dimension (N) * Details of the interchanges and the block structure of D * as determined by CSYTRF. * * B (input) COMPLEX array, dimension (LDB,NRHS) * The right hand side matrix B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * X (input/output) COMPLEX array, dimension (LDX,NRHS) * On entry, the solution matrix X, as computed by CSYTRS. * On exit, the improved solution matrix X. * * LDX (input) INTEGER * The leading dimension of the array X. LDX >= max(1,N). * * FERR (output) REAL array, dimension (NRHS) * The estimated forward error bound for each solution vector * X(j) (the j-th column of the solution matrix X). * If XTRUE is the true solution corresponding to X(j), FERR(j) * is an estimated upper bound for the magnitude of the largest * element in (X(j) - XTRUE) divided by the magnitude of the * largest element in X(j). The estimate is as reliable as * the estimate for RCOND, and is almost always a slight * overestimate of the true error. * * BERR (output) REAL array, dimension (NRHS) * The componentwise relative backward error of each solution * vector X(j) (i.e., the smallest relative change in * any element of A or B that makes X(j) an exact solution). * * WORK (workspace) COMPLEX array, dimension (2*N) * * RWORK (workspace) REAL array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * Internal Parameters * =================== * * ITMAX is the maximum number of steps of iterative refinement. * * ===================================================================== * * .. Parameters .. INTEGER ITMAX PARAMETER ( ITMAX = 5 ) REAL ZERO PARAMETER ( ZERO = 0.0E+0 ) COMPLEX ONE PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) ) REAL TWO PARAMETER ( TWO = 2.0E+0 ) REAL THREE PARAMETER ( THREE = 3.0E+0 ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER COUNT, I, J, K, KASE, NZ REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK COMPLEX ZDUM * .. * .. Local Arrays .. INTEGER ISAVE( 3 ) * .. * .. External Subroutines .. EXTERNAL CAXPY, CCOPY, CLACN2, CSYMV, CSYTRS, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, MAX, REAL * .. * .. External Functions .. LOGICAL LSAME REAL SLAMCH EXTERNAL LSAME, SLAMCH * .. * .. Statement Functions .. REAL CABS1 * .. * .. Statement Function definitions .. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) ) * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( NRHS.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN INFO = -7 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -10 ELSE IF( LDX.LT.MAX( 1, N ) ) THEN INFO = -12 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CSYRFS', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN DO 10 J = 1, NRHS FERR( J ) = ZERO BERR( J ) = ZERO 10 CONTINUE RETURN END IF * * NZ = maximum number of nonzero elements in each row of A, plus 1 * NZ = N + 1 EPS = SLAMCH( 'Epsilon' ) SAFMIN = SLAMCH( 'Safe minimum' ) SAFE1 = NZ*SAFMIN SAFE2 = SAFE1 / EPS * * Do for each right hand side * DO 140 J = 1, NRHS * COUNT = 1 LSTRES = THREE 20 CONTINUE * * Loop until stopping criterion is satisfied. * * Compute residual R = B - A * X * CALL CCOPY( N, B( 1, J ), 1, WORK, 1 ) CALL CSYMV( UPLO, N, -ONE, A, LDA, X( 1, J ), 1, ONE, WORK, 1 ) * * Compute componentwise relative backward error from formula * * max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) * * where abs(Z) is the componentwise absolute value of the matrix * or vector Z. If the i-th component of the denominator is less * than SAFE2, then SAFE1 is added to the i-th components of the * numerator and denominator before dividing. * DO 30 I = 1, N RWORK( I ) = CABS1( B( I, J ) ) 30 CONTINUE * * Compute abs(A)*abs(X) + abs(B). * IF( UPPER ) THEN DO 50 K = 1, N S = ZERO XK = CABS1( X( K, J ) ) DO 40 I = 1, K - 1 RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) ) 40 CONTINUE RWORK( K ) = RWORK( K ) + CABS1( A( K, K ) )*XK + S 50 CONTINUE ELSE DO 70 K = 1, N S = ZERO XK = CABS1( X( K, J ) ) RWORK( K ) = RWORK( K ) + CABS1( A( K, K ) )*XK DO 60 I = K + 1, N RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) ) 60 CONTINUE RWORK( K ) = RWORK( K ) + S 70 CONTINUE END IF S = ZERO DO 80 I = 1, N IF( RWORK( I ).GT.SAFE2 ) THEN S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) ) ELSE S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) / $ ( RWORK( I )+SAFE1 ) ) END IF 80 CONTINUE BERR( J ) = S * * Test stopping criterion. Continue iterating if * 1) The residual BERR(J) is larger than machine epsilon, and * 2) BERR(J) decreased by at least a factor of 2 during the * last iteration, and * 3) At most ITMAX iterations tried. * IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND. $ COUNT.LE.ITMAX ) THEN * * Update solution and try again. * CALL CSYTRS( UPLO, N, 1, AF, LDAF, IPIV, WORK, N, INFO ) CALL CAXPY( N, ONE, WORK, 1, X( 1, J ), 1 ) LSTRES = BERR( J ) COUNT = COUNT + 1 GO TO 20 END IF * * Bound error from formula * * norm(X - XTRUE) / norm(X) .le. FERR = * norm( abs(inv(A))* * ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) * * where * norm(Z) is the magnitude of the largest component of Z * inv(A) is the inverse of A * abs(Z) is the componentwise absolute value of the matrix or * vector Z * NZ is the maximum number of nonzeros in any row of A, plus 1 * EPS is machine epsilon * * The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) * is incremented by SAFE1 if the i-th component of * abs(A)*abs(X) + abs(B) is less than SAFE2. * * Use CLACN2 to estimate the infinity-norm of the matrix * inv(A) * diag(W), * where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) * DO 90 I = 1, N IF( RWORK( I ).GT.SAFE2 ) THEN RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) ELSE RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) + $ SAFE1 END IF 90 CONTINUE * KASE = 0 100 CONTINUE CALL CLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE ) IF( KASE.NE.0 ) THEN IF( KASE.EQ.1 ) THEN * * Multiply by diag(W)*inv(A**T). * CALL CSYTRS( UPLO, N, 1, AF, LDAF, IPIV, WORK, N, INFO ) DO 110 I = 1, N WORK( I ) = RWORK( I )*WORK( I ) 110 CONTINUE ELSE IF( KASE.EQ.2 ) THEN * * Multiply by inv(A)*diag(W). * DO 120 I = 1, N WORK( I ) = RWORK( I )*WORK( I ) 120 CONTINUE CALL CSYTRS( UPLO, N, 1, AF, LDAF, IPIV, WORK, N, INFO ) END IF GO TO 100 END IF * * Normalize error. * LSTRES = ZERO DO 130 I = 1, N LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) ) 130 CONTINUE IF( LSTRES.NE.ZERO ) $ FERR( J ) = FERR( J ) / LSTRES * 140 CONTINUE * RETURN * * End of CSYRFS * END |