1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
SUBROUTINE CSYSV( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
$ LWORK, INFO ) * * -- LAPACK driver routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * @generated c * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, LDB, LWORK, N, NRHS * .. * .. Array Arguments .. INTEGER IPIV( * ) COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ) * .. * * Purpose * ======= * * CSYSV computes the solution to a complex system of linear equations * A * X = B, * where A is an N-by-N symmetric matrix and X and B are N-by-NRHS * matrices. * * The diagonal pivoting method is used to factor A as * A = U * D * U**T, if UPLO = 'U', or * A = L * D * L**T, if UPLO = 'L', * where U (or L) is a product of permutation and unit upper (lower) * triangular matrices, and D is symmetric and block diagonal with * 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then * used to solve the system of equations A * X = B. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The number of linear equations, i.e., the order of the * matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * A (input/output) COMPLEX array, dimension (LDA,N) * On entry, the symmetric matrix A. If UPLO = 'U', the leading * N-by-N upper triangular part of A contains the upper * triangular part of the matrix A, and the strictly lower * triangular part of A is not referenced. If UPLO = 'L', the * leading N-by-N lower triangular part of A contains the lower * triangular part of the matrix A, and the strictly upper * triangular part of A is not referenced. * * On exit, if INFO = 0, the block diagonal matrix D and the * multipliers used to obtain the factor U or L from the * factorization A = U*D*U**T or A = L*D*L**T as computed by * CSYTRF. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * IPIV (output) INTEGER array, dimension (N) * Details of the interchanges and the block structure of D, as * determined by CSYTRF. If IPIV(k) > 0, then rows and columns * k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 * diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, * then rows and columns k-1 and -IPIV(k) were interchanged and * D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and * IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and * -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 * diagonal block. * * B (input/output) COMPLEX array, dimension (LDB,NRHS) * On entry, the N-by-NRHS right hand side matrix B. * On exit, if INFO = 0, the N-by-NRHS solution matrix X. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The length of WORK. LWORK >= 1, and for best performance * LWORK >= max(1,N*NB), where NB is the optimal blocksize for * CSYTRF. * for LWORK < N, TRS will be done with Level BLAS 2 * for LWORK >= N, TRS will be done with Level BLAS 3 * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, D(i,i) is exactly zero. The factorization * has been completed, but the block diagonal matrix D is * exactly singular, so the solution could not be computed. * * ===================================================================== * * .. Local Scalars .. LOGICAL LQUERY INTEGER LWKOPT, NB * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV EXTERNAL LSAME, ILAENV * .. * .. External Subroutines .. EXTERNAL XERBLA, CSYTRF, CSYTRS, CSYTRS2 * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( NRHS.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN INFO = -10 END IF * IF( INFO.EQ.0 ) THEN IF( N.EQ.0 ) THEN LWKOPT = 1 ELSE CALL CSYTRF( UPLO, N, A, LDA, IPIV, WORK, -1, INFO ) LWKOPT = WORK(1) END IF WORK( 1 ) = LWKOPT END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CSYSV ', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Compute the factorization A = U*D*U**T or A = L*D*L**T. * CALL CSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) IF( INFO.EQ.0 ) THEN * * Solve the system A*X = B, overwriting B with X. * IF ( LWORK.LT.N ) THEN * * Solve with TRS ( Use Level BLAS 2) * CALL CSYTRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO ) * ELSE * * Solve with TRS2 ( Use Level BLAS 3) * CALL CSYTRS2( UPLO,N,NRHS,A,LDA,IPIV,B,LDB,WORK,INFO ) * END IF * END IF * WORK( 1 ) = LWKOPT * RETURN * * End of CSYSV * END |