CTGEVC

   November 2006

Purpose

CTGEVC computes some or all of the right and/or left eigenvectors of
a pair of complex matrices (S,P), where S and P are upper triangular.
Matrix pairs of this type are produced by the generalized Schur
factorization of a complex matrix pair (A,B):

   A = Q*S*Z**H,  B = Q*P*Z**H

as computed by CGGHRD + CHGEQZ.

The right eigenvector x and the left eigenvector y of (S,P)
corresponding to an eigenvalue w are defined by:

   S*x = w*P*x,  (y**H)*S = w*(y**H)*P,

where y**H denotes the conjugate tranpose of y.
The eigenvalues are not input to this routine, but are computed
directly from the diagonal elements of S and P.

This routine returns the matrices X and/or Y of right and left
eigenvectors of (S,P), or the products Z*X and/or Q*Y,
where Z and Q are input matrices.
If Q and Z are the unitary factors from the generalized Schur
factorization of a matrix pair (A,B), then Z*X and Q*Y
are the matrices of right and left eigenvectors of (A,B).

Arguments

SIDE
(input) CHARACTER*1
= 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.
HOWMNY
(input) CHARACTER*1
= 'A': compute all right and/or left eigenvectors;
= 'B': compute all right and/or left eigenvectors,
       backtransformed by the matrices in VR and/or VL;
= 'S': compute selected right and/or left eigenvectors,
       specified by the logical array SELECT.
SELECT
(input) LOGICAL array, dimension (N)
If HOWMNY='S', SELECT specifies the eigenvectors to be
computed.  The eigenvector corresponding to the j-th
eigenvalue is computed if SELECT(j) = .TRUE..
Not referenced if HOWMNY = 'A' or 'B'.
N
(input) INTEGER
The order of the matrices S and P.  N >= 0.
S
(input) COMPLEX array, dimension (LDS,N)
The upper triangular matrix S from a generalized Schur
factorization, as computed by CHGEQZ.
LDS
(input) INTEGER
The leading dimension of array S.  LDS >= max(1,N).
P
(input) COMPLEX array, dimension (LDP,N)
The upper triangular matrix P from a generalized Schur
factorization, as computed by CHGEQZ.  P must have real
diagonal elements.
LDP
(input) INTEGER
The leading dimension of array P.  LDP >= max(1,N).
VL
(input/output) COMPLEX array, dimension (LDVL,MM)
On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
contain an N-by-N matrix Q (usually the unitary matrix Q
of left Schur vectors returned by CHGEQZ).
On exit, if SIDE = 'L' or 'B', VL contains:
if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P);
if HOWMNY = 'B', the matrix Q*Y;
if HOWMNY = 'S', the left eigenvectors of (S,P) specified by
            SELECT, stored consecutively in the columns of
            VL, in the same order as their eigenvalues.
Not referenced if SIDE = 'R'.
LDVL
(input) INTEGER
The leading dimension of array VL.  LDVL >= 1, and if
SIDE = 'L' or 'l' or 'B' or 'b', LDVL >= N.
VR
(input/output) COMPLEX array, dimension (LDVR,MM)
On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
contain an N-by-N matrix Q (usually the unitary matrix Z
of right Schur vectors returned by CHGEQZ).
On exit, if SIDE = 'R' or 'B', VR contains:
if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P);
if HOWMNY = 'B', the matrix Z*X;
if HOWMNY = 'S', the right eigenvectors of (S,P) specified by
            SELECT, stored consecutively in the columns of
            VR, in the same order as their eigenvalues.
Not referenced if SIDE = 'L'.
LDVR
(input) INTEGER
The leading dimension of the array VR.  LDVR >= 1, and if
SIDE = 'R' or 'B', LDVR >= N.
MM
(input) INTEGER
The number of columns in the arrays VL and/or VR. MM >= M.
M
(output) INTEGER
The number of columns in the arrays VL and/or VR actually
used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M
is set to N.  Each selected eigenvector occupies one column.
WORK
(workspace) COMPLEX array, dimension (2*N)
RWORK
(workspace) REAL array, dimension (2*N)
INFO
(output) INTEGER
= 0:  successful exit.
< 0:  if INFO = -i, the i-th argument had an illegal value.

Call Graph

Caller Graph