1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
SUBROUTINE CTREXC( COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, INFO )
* * -- LAPACK routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER COMPQ INTEGER IFST, ILST, INFO, LDQ, LDT, N * .. * .. Array Arguments .. COMPLEX Q( LDQ, * ), T( LDT, * ) * .. * * Purpose * ======= * * CTREXC reorders the Schur factorization of a complex matrix * A = Q*T*Q**H, so that the diagonal element of T with row index IFST * is moved to row ILST. * * The Schur form T is reordered by a unitary similarity transformation * Z**H*T*Z, and optionally the matrix Q of Schur vectors is updated by * postmultplying it with Z. * * Arguments * ========= * * COMPQ (input) CHARACTER*1 * = 'V': update the matrix Q of Schur vectors; * = 'N': do not update Q. * * N (input) INTEGER * The order of the matrix T. N >= 0. * * T (input/output) COMPLEX array, dimension (LDT,N) * On entry, the upper triangular matrix T. * On exit, the reordered upper triangular matrix. * * LDT (input) INTEGER * The leading dimension of the array T. LDT >= max(1,N). * * Q (input/output) COMPLEX array, dimension (LDQ,N) * On entry, if COMPQ = 'V', the matrix Q of Schur vectors. * On exit, if COMPQ = 'V', Q has been postmultiplied by the * unitary transformation matrix Z which reorders T. * If COMPQ = 'N', Q is not referenced. * * LDQ (input) INTEGER * The leading dimension of the array Q. LDQ >= max(1,N). * * IFST (input) INTEGER * ILST (input) INTEGER * Specify the reordering of the diagonal elements of T: * The element with row index IFST is moved to row ILST by a * sequence of transpositions between adjacent elements. * 1 <= IFST <= N; 1 <= ILST <= N. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Local Scalars .. LOGICAL WANTQ INTEGER K, M1, M2, M3 REAL CS COMPLEX SN, T11, T22, TEMP * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL CLARTG, CROT, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG, MAX * .. * .. Executable Statements .. * * Decode and test the input parameters. * INFO = 0 WANTQ = LSAME( COMPQ, 'V' ) IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDT.LT.MAX( 1, N ) ) THEN INFO = -4 ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.MAX( 1, N ) ) ) THEN INFO = -6 ELSE IF( IFST.LT.1 .OR. IFST.GT.N ) THEN INFO = -7 ELSE IF( ILST.LT.1 .OR. ILST.GT.N ) THEN INFO = -8 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CTREXC', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.1 .OR. IFST.EQ.ILST ) $ RETURN * IF( IFST.LT.ILST ) THEN * * Move the IFST-th diagonal element forward down the diagonal. * M1 = 0 M2 = -1 M3 = 1 ELSE * * Move the IFST-th diagonal element backward up the diagonal. * M1 = -1 M2 = 0 M3 = -1 END IF * DO 10 K = IFST + M1, ILST + M2, M3 * * Interchange the k-th and (k+1)-th diagonal elements. * T11 = T( K, K ) T22 = T( K+1, K+1 ) * * Determine the transformation to perform the interchange. * CALL CLARTG( T( K, K+1 ), T22-T11, CS, SN, TEMP ) * * Apply transformation to the matrix T. * IF( K+2.LE.N ) $ CALL CROT( N-K-1, T( K, K+2 ), LDT, T( K+1, K+2 ), LDT, CS, $ SN ) CALL CROT( K-1, T( 1, K ), 1, T( 1, K+1 ), 1, CS, CONJG( SN ) ) * T( K, K ) = T22 T( K+1, K+1 ) = T11 * IF( WANTQ ) THEN * * Accumulate transformation in the matrix Q. * CALL CROT( N, Q( 1, K ), 1, Q( 1, K+1 ), 1, CS, $ CONJG( SN ) ) END IF * 10 CONTINUE * RETURN * * End of CTREXC * END |