1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
SUBROUTINE CUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
$ LDC, WORK, LWORK, INFO ) * * -- LAPACK routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER SIDE, TRANS, VECT INTEGER INFO, K, LDA, LDC, LWORK, M, N * .. * .. Array Arguments .. COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ), $ WORK( * ) * .. * * Purpose * ======= * * If VECT = 'Q', CUNMBR overwrites the general complex M-by-N matrix C * with * SIDE = 'L' SIDE = 'R' * TRANS = 'N': Q * C C * Q * TRANS = 'C': Q**H * C C * Q**H * * If VECT = 'P', CUNMBR overwrites the general complex M-by-N matrix C * with * SIDE = 'L' SIDE = 'R' * TRANS = 'N': P * C C * P * TRANS = 'C': P**H * C C * P**H * * Here Q and P**H are the unitary matrices determined by CGEBRD when * reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q * and P**H are defined as products of elementary reflectors H(i) and * G(i) respectively. * * Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the * order of the unitary matrix Q or P**H that is applied. * * If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: * if nq >= k, Q = H(1) H(2) . . . H(k); * if nq < k, Q = H(1) H(2) . . . H(nq-1). * * If VECT = 'P', A is assumed to have been a K-by-NQ matrix: * if k < nq, P = G(1) G(2) . . . G(k); * if k >= nq, P = G(1) G(2) . . . G(nq-1). * * Arguments * ========= * * VECT (input) CHARACTER*1 * = 'Q': apply Q or Q**H; * = 'P': apply P or P**H. * * SIDE (input) CHARACTER*1 * = 'L': apply Q, Q**H, P or P**H from the Left; * = 'R': apply Q, Q**H, P or P**H from the Right. * * TRANS (input) CHARACTER*1 * = 'N': No transpose, apply Q or P; * = 'C': Conjugate transpose, apply Q**H or P**H. * * M (input) INTEGER * The number of rows of the matrix C. M >= 0. * * N (input) INTEGER * The number of columns of the matrix C. N >= 0. * * K (input) INTEGER * If VECT = 'Q', the number of columns in the original * matrix reduced by CGEBRD. * If VECT = 'P', the number of rows in the original * matrix reduced by CGEBRD. * K >= 0. * * A (input) COMPLEX array, dimension * (LDA,min(nq,K)) if VECT = 'Q' * (LDA,nq) if VECT = 'P' * The vectors which define the elementary reflectors H(i) and * G(i), whose products determine the matrices Q and P, as * returned by CGEBRD. * * LDA (input) INTEGER * The leading dimension of the array A. * If VECT = 'Q', LDA >= max(1,nq); * if VECT = 'P', LDA >= max(1,min(nq,K)). * * TAU (input) COMPLEX array, dimension (min(nq,K)) * TAU(i) must contain the scalar factor of the elementary * reflector H(i) or G(i) which determines Q or P, as returned * by CGEBRD in the array argument TAUQ or TAUP. * * C (input/output) COMPLEX array, dimension (LDC,N) * On entry, the M-by-N matrix C. * On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q * or P*C or P**H*C or C*P or C*P**H. * * LDC (input) INTEGER * The leading dimension of the array C. LDC >= max(1,M). * * WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. * If SIDE = 'L', LWORK >= max(1,N); * if SIDE = 'R', LWORK >= max(1,M); * if N = 0 or M = 0, LWORK >= 1. * For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L', * and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the * optimal blocksize. (NB = 0 if M = 0 or N = 0.) * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Local Scalars .. LOGICAL APPLYQ, LEFT, LQUERY, NOTRAN CHARACTER TRANST INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV EXTERNAL ILAENV, LSAME * .. * .. External Subroutines .. EXTERNAL CUNMLQ, CUNMQR, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 APPLYQ = LSAME( VECT, 'Q' ) LEFT = LSAME( SIDE, 'L' ) NOTRAN = LSAME( TRANS, 'N' ) LQUERY = ( LWORK.EQ.-1 ) * * NQ is the order of Q or P and NW is the minimum dimension of WORK * IF( LEFT ) THEN NQ = M NW = N ELSE NQ = N NW = M END IF IF( M.EQ.0 .OR. N.EQ.0 ) THEN NW = 0 END IF IF( .NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN INFO = -1 ELSE IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN INFO = -2 ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN INFO = -3 ELSE IF( M.LT.0 ) THEN INFO = -4 ELSE IF( N.LT.0 ) THEN INFO = -5 ELSE IF( K.LT.0 ) THEN INFO = -6 ELSE IF( ( APPLYQ .AND. LDA.LT.MAX( 1, NQ ) ) .OR. $ ( .NOT.APPLYQ .AND. LDA.LT.MAX( 1, MIN( NQ, K ) ) ) ) $ THEN INFO = -8 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -11 ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN INFO = -13 END IF * IF( INFO.EQ.0 ) THEN IF( NW.GT.0 ) THEN IF( APPLYQ ) THEN IF( LEFT ) THEN NB = ILAENV( 1, 'CUNMQR', SIDE // TRANS, M-1, N, M-1, $ -1 ) ELSE NB = ILAENV( 1, 'CUNMQR', SIDE // TRANS, M, N-1, N-1, $ -1 ) END IF ELSE IF( LEFT ) THEN NB = ILAENV( 1, 'CUNMLQ', SIDE // TRANS, M-1, N, M-1, $ -1 ) ELSE NB = ILAENV( 1, 'CUNMLQ', SIDE // TRANS, M, N-1, N-1, $ -1 ) END IF END IF LWKOPT = MAX( 1, NW*NB ) ELSE LWKOPT = 1 END IF WORK( 1 ) = LWKOPT END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CUNMBR', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( M.EQ.0 .OR. N.EQ.0 ) $ RETURN * IF( APPLYQ ) THEN * * Apply Q * IF( NQ.GE.K ) THEN * * Q was determined by a call to CGEBRD with nq >= k * CALL CUNMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, $ WORK, LWORK, IINFO ) ELSE IF( NQ.GT.1 ) THEN * * Q was determined by a call to CGEBRD with nq < k * IF( LEFT ) THEN MI = M - 1 NI = N I1 = 2 I2 = 1 ELSE MI = M NI = N - 1 I1 = 1 I2 = 2 END IF CALL CUNMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU, $ C( I1, I2 ), LDC, WORK, LWORK, IINFO ) END IF ELSE * * Apply P * IF( NOTRAN ) THEN TRANST = 'C' ELSE TRANST = 'N' END IF IF( NQ.GT.K ) THEN * * P was determined by a call to CGEBRD with nq > k * CALL CUNMLQ( SIDE, TRANST, M, N, K, A, LDA, TAU, C, LDC, $ WORK, LWORK, IINFO ) ELSE IF( NQ.GT.1 ) THEN * * P was determined by a call to CGEBRD with nq <= k * IF( LEFT ) THEN MI = M - 1 NI = N I1 = 2 I2 = 1 ELSE MI = M NI = N - 1 I1 = 1 I2 = 2 END IF CALL CUNMLQ( SIDE, TRANST, MI, NI, NQ-1, A( 1, 2 ), LDA, $ TAU, C( I1, I2 ), LDC, WORK, LWORK, IINFO ) END IF END IF WORK( 1 ) = LWKOPT RETURN * * End of CUNMBR * END |