DBBCSD
Purpose
DBBCSD computes the CS decomposition of an orthogonal matrix in
bidiagonal-block form,
[ B11 | B12 0 0 ]
[ 0 | 0 -I 0 ]
X = [----------------]
[ B21 | B22 0 0 ]
[ 0 | 0 0 I ]
[ C | -S 0 0 ]
[ U1 | ] [ 0 | 0 -I 0 ] [ V1 | ]**T
= [---------] [---------------] [---------] .
[ | U2 ] [ S | C 0 0 ] [ | V2 ]
[ 0 | 0 0 I ]
X is M-by-M, its top-left block is P-by-Q, and Q must be no larger
than P, M-P, or M-Q. (If Q is not the smallest index, then X must be
transposed and/or permuted. This can be done in constant time using
the TRANS and SIGNS options. See DORCSD for details.)
The bidiagonal matrices B11, B12, B21, and B22 are represented
implicitly by angles THETA(1:Q) and PHI(1:Q-1).
The orthogonal matrices U1, U2, V1T, and V2T are input/output.
The input matrices are pre- or post-multiplied by the appropriate
singular vector matrices.
bidiagonal-block form,
[ B11 | B12 0 0 ]
[ 0 | 0 -I 0 ]
X = [----------------]
[ B21 | B22 0 0 ]
[ 0 | 0 0 I ]
[ C | -S 0 0 ]
[ U1 | ] [ 0 | 0 -I 0 ] [ V1 | ]**T
= [---------] [---------------] [---------] .
[ | U2 ] [ S | C 0 0 ] [ | V2 ]
[ 0 | 0 0 I ]
X is M-by-M, its top-left block is P-by-Q, and Q must be no larger
than P, M-P, or M-Q. (If Q is not the smallest index, then X must be
transposed and/or permuted. This can be done in constant time using
the TRANS and SIGNS options. See DORCSD for details.)
The bidiagonal matrices B11, B12, B21, and B22 are represented
implicitly by angles THETA(1:Q) and PHI(1:Q-1).
The orthogonal matrices U1, U2, V1T, and V2T are input/output.
The input matrices are pre- or post-multiplied by the appropriate
singular vector matrices.
Arguments
JOBU1 |
(input) CHARACTER
= 'Y': U1 is updated;
otherwise: U1 is not updated. |
JOBU2 |
(input) CHARACTER
= 'Y': U2 is updated;
otherwise: U2 is not updated. |
JOBV1T |
(input) CHARACTER
= 'Y': V1T is updated;
otherwise: V1T is not updated. |
JOBV2T |
(input) CHARACTER
= 'Y': V2T is updated;
otherwise: V2T is not updated. |
TRANS |
(input) CHARACTER
= 'T': X, U1, U2, V1T, and V2T are stored in row-major
order; otherwise: X, U1, U2, V1T, and V2T are stored in column- major order. |
M |
(input) INTEGER
The number of rows and columns in X, the orthogonal matrix in
bidiagonal-block form. |
P |
(input) INTEGER
The number of rows in the top-left block of X. 0 <= P <= M.
|
Q |
(input) INTEGER
The number of columns in the top-left block of X.
0 <= Q <= MIN(P,M-P,M-Q). |
THETA |
(input/output) DOUBLE PRECISION array, dimension (Q)
On entry, the angles THETA(1),...,THETA(Q) that, along with
PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block form. On exit, the angles whose cosines and sines define the diagonal blocks in the CS decomposition. |
PHI |
(input/workspace) DOUBLE PRECISION array, dimension (Q-1)
The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),...,
THETA(Q), define the matrix in bidiagonal-block form. |
U1 |
(input/output) DOUBLE PRECISION array, dimension (LDU1,P)
On entry, an LDU1-by-P matrix. On exit, U1 is postmultiplied
by the left singular vector matrix common to [ B11 ; 0 ] and [ B12 0 0 ; 0 -I 0 0 ]. |
LDU1 |
(input) INTEGER
The leading dimension of the array U1.
|
U2 |
(input/output) DOUBLE PRECISION array, dimension (LDU2,M-P)
On entry, an LDU2-by-(M-P) matrix. On exit, U2 is
postmultiplied by the left singular vector matrix common to [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ]. |
LDU2 |
(input) INTEGER
The leading dimension of the array U2.
|
V1T |
(input/output) DOUBLE PRECISION array, dimension (LDV1T,Q)
On entry, a LDV1T-by-Q matrix. On exit, V1T is premultiplied
by the transpose of the right singular vector matrix common to [ B11 ; 0 ] and [ B21 ; 0 ]. |
LDV1T |
(input) INTEGER
The leading dimension of the array V1T.
|
V2T |
(input/output) DOUBLE PRECISION array, dimenison (LDV2T,M-Q)
On entry, a LDV2T-by-(M-Q) matrix. On exit, V2T is
premultiplied by the transpose of the right singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and [ B22 0 0 ; 0 0 I ]. |
LDV2T |
(input) INTEGER
The leading dimension of the array V2T.
|
B11D |
(output) DOUBLE PRECISION array, dimension (Q)
When DBBCSD converges, B11D contains the cosines of THETA(1),
contains the diagonal of the partially reduced top-left block. |
B11E |
(output) DOUBLE PRECISION array, dimension (Q-1)
When DBBCSD converges, B11E contains zeros. If DBBCSD fails
to converge, then B11E contains the superdiagonal of the partially reduced top-left block. |
B12D |
(output) DOUBLE PRECISION array, dimension (Q)
When DBBCSD converges, B12D contains the negative sines of
THETA(1), ..., THETA(Q). If DBBCSD fails to converge, then B12D contains the diagonal of the partially reduced top-right block. |
B12E |
(output) DOUBLE PRECISION array, dimension (Q-1)
When DBBCSD converges, B12E contains zeros. If DBBCSD fails
to converge, then B12E contains the subdiagonal of the partially reduced top-right block. |
WORK |
(workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
LWORK |
(input) INTEGER
The dimension of the array WORK. LWORK >= MAX(1,8*Q).
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the work array, and no error message related to LWORK is issued by XERBLA. |
INFO |
(output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value. > 0: if DBBCSD did not converge, INFO specifies the number of nonzero entries in PHI, and B11D, B11E, etc., contain the partially reduced matrix. |
Reference
[1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
Algorithms, 50(1):33-65, 2009.
Algorithms, 50(1):33-65, 2009.
Internal Parameters
TOLMUL DOUBLE PRECISION, default = MAX(10,MIN(100,EPS**(-1/8)))
TOLMUL controls the convergence criterion of the QR loop.
Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
are within TOLMUL*EPS of either bound.
TOLMUL controls the convergence criterion of the QR loop.
Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
are within TOLMUL*EPS of either bound.