1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 |
SUBROUTINE DGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
$ M, N, A, LDA, SVA, U, LDU, V, LDV, $ WORK, LWORK, IWORK, INFO ) * * -- LAPACK routine (version 3.3.1) -- * * -- Contributed by Zlatko Drmac of the University of Zagreb and -- * -- Kresimir Veselic of the Fernuniversitaet Hagen -- * -- April 2011 -- * * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * This routine is also part of SIGMA (version 1.23, October 23. 2008.) * SIGMA is a library of algorithms for highly accurate algorithms for * computation of SVD, PSVD, QSVD, (H,K)-SVD, and for solution of the * eigenvalue problems Hx = lambda M x, H M x = lambda x with H, M > 0. * * .. Scalar Arguments .. IMPLICIT NONE INTEGER INFO, LDA, LDU, LDV, LWORK, M, N * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), SVA( N ), U( LDU, * ), V( LDV, * ), $ WORK( LWORK ) INTEGER IWORK( * ) CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV * .. * * Purpose * ======= * * DGEJSV computes the singular value decomposition (SVD) of a real M-by-N * matrix [A], where M >= N. The SVD of [A] is written as * * [A] = [U] * [SIGMA] * [V]^t, * * where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N * diagonal elements, [U] is an M-by-N (or M-by-M) orthonormal matrix, and * [V] is an N-by-N orthogonal matrix. The diagonal elements of [SIGMA] are * the singular values of [A]. The columns of [U] and [V] are the left and * the right singular vectors of [A], respectively. The matrices [U] and [V] * are computed and stored in the arrays U and V, respectively. The diagonal * of [SIGMA] is computed and stored in the array SVA. * * Arguments * ========= * * JOBA (input) CHARACTER*1 * Specifies the level of accuracy: * = 'C': This option works well (high relative accuracy) if A = B * D, * with well-conditioned B and arbitrary diagonal matrix D. * The accuracy cannot be spoiled by COLUMN scaling. The * accuracy of the computed output depends on the condition of * B, and the procedure aims at the best theoretical accuracy. * The relative error max_{i=1:N}|d sigma_i| / sigma_i is * bounded by f(M,N)*epsilon* cond(B), independent of D. * The input matrix is preprocessed with the QRF with column * pivoting. This initial preprocessing and preconditioning by * a rank revealing QR factorization is common for all values of * JOBA. Additional actions are specified as follows: * = 'E': Computation as with 'C' with an additional estimate of the * condition number of B. It provides a realistic error bound. * = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings * D1, D2, and well-conditioned matrix C, this option gives * higher accuracy than the 'C' option. If the structure of the * input matrix is not known, and relative accuracy is * desirable, then this option is advisable. The input matrix A * is preprocessed with QR factorization with FULL (row and * column) pivoting. * = 'G' Computation as with 'F' with an additional estimate of the * condition number of B, where A=D*B. If A has heavily weighted * rows, then using this condition number gives too pessimistic * error bound. * = 'A': Small singular values are the noise and the matrix is treated * as numerically rank defficient. The error in the computed * singular values is bounded by f(m,n)*epsilon*||A||. * The computed SVD A = U * S * V^t restores A up to * f(m,n)*epsilon*||A||. * This gives the procedure the licence to discard (set to zero) * all singular values below N*epsilon*||A||. * = 'R': Similar as in 'A'. Rank revealing property of the initial * QR factorization is used do reveal (using triangular factor) * a gap sigma_{r+1} < epsilon * sigma_r in which case the * numerical RANK is declared to be r. The SVD is computed with * absolute error bounds, but more accurately than with 'A'. * * JOBU (input) CHARACTER*1 * Specifies whether to compute the columns of U: * = 'U': N columns of U are returned in the array U. * = 'F': full set of M left sing. vectors is returned in the array U. * = 'W': U may be used as workspace of length M*N. See the description * of U. * = 'N': U is not computed. * * JOBV (input) CHARACTER*1 * Specifies whether to compute the matrix V: * = 'V': N columns of V are returned in the array V; Jacobi rotations * are not explicitly accumulated. * = 'J': N columns of V are returned in the array V, but they are * computed as the product of Jacobi rotations. This option is * allowed only if JOBU .NE. 'N', i.e. in computing the full SVD. * = 'W': V may be used as workspace of length N*N. See the description * of V. * = 'N': V is not computed. * * JOBR (input) CHARACTER*1 * Specifies the RANGE for the singular values. Issues the licence to * set to zero small positive singular values if they are outside * specified range. If A .NE. 0 is scaled so that the largest singular * value of c*A is around DSQRT(BIG), BIG=SLAMCH('O'), then JOBR issues * the licence to kill columns of A whose norm in c*A is less than * DSQRT(SFMIN) (for JOBR.EQ.'R'), or less than SMALL=SFMIN/EPSLN, * where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E'). * = 'N': Do not kill small columns of c*A. This option assumes that * BLAS and QR factorizations and triangular solvers are * implemented to work in that range. If the condition of A * is greater than BIG, use DGESVJ. * = 'R': RESTRICTED range for sigma(c*A) is [DSQRT(SFMIN), DSQRT(BIG)] * (roughly, as described above). This option is recommended. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~ * For computing the singular values in the FULL range [SFMIN,BIG] * use DGESVJ. * * JOBT (input) CHARACTER*1 * If the matrix is square then the procedure may determine to use * transposed A if A^t seems to be better with respect to convergence. * If the matrix is not square, JOBT is ignored. This is subject to * changes in the future. * The decision is based on two values of entropy over the adjoint * orbit of A^t * A. See the descriptions of WORK(6) and WORK(7). * = 'T': transpose if entropy test indicates possibly faster * convergence of Jacobi process if A^t is taken as input. If A is * replaced with A^t, then the row pivoting is included automatically. * = 'N': do not speculate. * This option can be used to compute only the singular values, or the * full SVD (U, SIGMA and V). For only one set of singular vectors * (U or V), the caller should provide both U and V, as one of the * matrices is used as workspace if the matrix A is transposed. * The implementer can easily remove this constraint and make the * code more complicated. See the descriptions of U and V. * * JOBP (input) CHARACTER*1 * Issues the licence to introduce structured perturbations to drown * denormalized numbers. This licence should be active if the * denormals are poorly implemented, causing slow computation, * especially in cases of fast convergence (!). For details see [1,2]. * For the sake of simplicity, this perturbations are included only * when the full SVD or only the singular values are requested. The * implementer/user can easily add the perturbation for the cases of * computing one set of singular vectors. * = 'P': introduce perturbation * = 'N': do not perturb * * M (input) INTEGER * The number of rows of the input matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the input matrix A. M >= N >= 0. * * A (input/workspace) DOUBLE PRECISION array, dimension (LDA,N) * On entry, the M-by-N matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * SVA (workspace/output) DOUBLE PRECISION array, dimension (N) * On exit, * - For WORK(1)/WORK(2) = ONE: The singular values of A. During the * computation SVA contains Euclidean column norms of the * iterated matrices in the array A. * - For WORK(1) .NE. WORK(2): The singular values of A are * (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if * sigma_max(A) overflows or if small singular values have been * saved from underflow by scaling the input matrix A. * - If JOBR='R' then some of the singular values may be returned * as exact zeros obtained by "set to zero" because they are * below the numerical rank threshold or are denormalized numbers. * * U (workspace/output) DOUBLE PRECISION array, dimension ( LDU, N ) * If JOBU = 'U', then U contains on exit the M-by-N matrix of * the left singular vectors. * If JOBU = 'F', then U contains on exit the M-by-M matrix of * the left singular vectors, including an ONB * of the orthogonal complement of the Range(A). * If JOBU = 'W' .AND. (JOBV.EQ.'V' .AND. JOBT.EQ.'T' .AND. M.EQ.N), * then U is used as workspace if the procedure * replaces A with A^t. In that case, [V] is computed * in U as left singular vectors of A^t and then * copied back to the V array. This 'W' option is just * a reminder to the caller that in this case U is * reserved as workspace of length N*N. * If JOBU = 'N' U is not referenced. * * LDU (input) INTEGER * The leading dimension of the array U, LDU >= 1. * IF JOBU = 'U' or 'F' or 'W', then LDU >= M. * * V (workspace/output) DOUBLE PRECISION array, dimension ( LDV, N ) * If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of * the right singular vectors; * If JOBV = 'W', AND (JOBU.EQ.'U' AND JOBT.EQ.'T' AND M.EQ.N), * then V is used as workspace if the pprocedure * replaces A with A^t. In that case, [U] is computed * in V as right singular vectors of A^t and then * copied back to the U array. This 'W' option is just * a reminder to the caller that in this case V is * reserved as workspace of length N*N. * If JOBV = 'N' V is not referenced. * * LDV (input) INTEGER * The leading dimension of the array V, LDV >= 1. * If JOBV = 'V' or 'J' or 'W', then LDV >= N. * * WORK (workspace/output) DOUBLE PRECISION array, dimension at least LWORK. * On exit, if N.GT.0 .AND. M.GT.0 (else not referenced), * WORK(1) = SCALE = WORK(2) / WORK(1) is the scaling factor such * that SCALE*SVA(1:N) are the computed singular values * of A. (See the description of SVA().) * WORK(2) = See the description of WORK(1). * WORK(3) = SCONDA is an estimate for the condition number of * column equilibrated A. (If JOBA .EQ. 'E' or 'G') * SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1). * It is computed using DPOCON. It holds * N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA * where R is the triangular factor from the QRF of A. * However, if R is truncated and the numerical rank is * determined to be strictly smaller than N, SCONDA is * returned as -1, thus indicating that the smallest * singular values might be lost. * * If full SVD is needed, the following two condition numbers are * useful for the analysis of the algorithm. They are provied for * a developer/implementer who is familiar with the details of * the method. * * WORK(4) = an estimate of the scaled condition number of the * triangular factor in the first QR factorization. * WORK(5) = an estimate of the scaled condition number of the * triangular factor in the second QR factorization. * The following two parameters are computed if JOBT .EQ. 'T'. * They are provided for a developer/implementer who is familiar * with the details of the method. * * WORK(6) = the entropy of A^t*A :: this is the Shannon entropy * of diag(A^t*A) / Trace(A^t*A) taken as point in the * probability simplex. * WORK(7) = the entropy of A*A^t. * * LWORK (input) INTEGER * Length of WORK to confirm proper allocation of work space. * LWORK depends on the job: * * If only SIGMA is needed ( JOBU.EQ.'N', JOBV.EQ.'N' ) and * -> .. no scaled condition estimate required (JOBE.EQ.'N'): * LWORK >= max(2*M+N,4*N+1,7). This is the minimal requirement. * ->> For optimal performance (blocked code) the optimal value * is LWORK >= max(2*M+N,3*N+(N+1)*NB,7). Here NB is the optimal * block size for DGEQP3 and DGEQRF. * In general, optimal LWORK is computed as * LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DGEQRF), 7). * -> .. an estimate of the scaled condition number of A is * required (JOBA='E', 'G'). In this case, LWORK is the maximum * of the above and N*N+4*N, i.e. LWORK >= max(2*M+N,N*N+4*N,7). * ->> For optimal performance (blocked code) the optimal value * is LWORK >= max(2*M+N,3*N+(N+1)*NB, N*N+4*N, 7). * In general, the optimal length LWORK is computed as * LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DGEQRF), * N+N*N+LWORK(DPOCON),7). * * If SIGMA and the right singular vectors are needed (JOBV.EQ.'V'), * -> the minimal requirement is LWORK >= max(2*M+N,4*N+1,7). * -> For optimal performance, LWORK >= max(2*M+N,3*N+(N+1)*NB,7), * where NB is the optimal block size for DGEQP3, DGEQRF, DGELQ, * DORMLQ. In general, the optimal length LWORK is computed as * LWORK >= max(2*M+N,N+LWORK(DGEQP3), N+LWORK(DPOCON), * N+LWORK(DGELQ), 2*N+LWORK(DGEQRF), N+LWORK(DORMLQ)). * * If SIGMA and the left singular vectors are needed * -> the minimal requirement is LWORK >= max(2*M+N,4*N+1,7). * -> For optimal performance: * if JOBU.EQ.'U' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,7), * if JOBU.EQ.'F' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,N+M*NB,7), * where NB is the optimal block size for DGEQP3, DGEQRF, DORMQR. * In general, the optimal length LWORK is computed as * LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DPOCON), * 2*N+LWORK(DGEQRF), N+LWORK(DORMQR)). * Here LWORK(DORMQR) equals N*NB (for JOBU.EQ.'U') or * M*NB (for JOBU.EQ.'F'). * * If the full SVD is needed: (JOBU.EQ.'U' or JOBU.EQ.'F') and * -> if JOBV.EQ.'V' * the minimal requirement is LWORK >= max(2*M+N,6*N+2*N*N). * -> if JOBV.EQ.'J' the minimal requirement is * LWORK >= max(2*M+N, 4*N+N*N,2*N+N*N+6). * -> For optimal performance, LWORK should be additionally * larger than N+M*NB, where NB is the optimal block size * for DORMQR. * * IWORK (workspace/output) INTEGER array, dimension M+3*N. * On exit, * IWORK(1) = the numerical rank determined after the initial * QR factorization with pivoting. See the descriptions * of JOBA and JOBR. * IWORK(2) = the number of the computed nonzero singular values * IWORK(3) = if nonzero, a warning message: * If IWORK(3).EQ.1 then some of the column norms of A * were denormalized floats. The requested high accuracy * is not warranted by the data. * * INFO (output) INTEGER * < 0 : if INFO = -i, then the i-th argument had an illegal value. * = 0 : successfull exit; * > 0 : DGEJSV did not converge in the maximal allowed number * of sweeps. The computed values may be inaccurate. * * Further Details * =============== * * DGEJSV implements a preconditioned Jacobi SVD algorithm. It uses DGEQP3, * DGEQRF, and DGELQF as preprocessors and preconditioners. Optionally, an * additional row pivoting can be used as a preprocessor, which in some * cases results in much higher accuracy. An example is matrix A with the * structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned * diagonal matrices and C is well-conditioned matrix. In that case, complete * pivoting in the first QR factorizations provides accuracy dependent on the * condition number of C, and independent of D1, D2. Such higher accuracy is * not completely understood theoretically, but it works well in practice. * Further, if A can be written as A = B*D, with well-conditioned B and some * diagonal D, then the high accuracy is guaranteed, both theoretically and * in software, independent of D. For more details see [1], [2]. * The computational range for the singular values can be the full range * ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS * & LAPACK routines called by DGEJSV are implemented to work in that range. * If that is not the case, then the restriction for safe computation with * the singular values in the range of normalized IEEE numbers is that the * spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not * overflow. This code (DGEJSV) is best used in this restricted range, * meaning that singular values of magnitude below ||A||_2 / DLAMCH('O') are * returned as zeros. See JOBR for details on this. * Further, this implementation is somewhat slower than the one described * in [1,2] due to replacement of some non-LAPACK components, and because * the choice of some tuning parameters in the iterative part (DGESVJ) is * left to the implementer on a particular machine. * The rank revealing QR factorization (in this code: DGEQP3) should be * implemented as in [3]. We have a new version of DGEQP3 under development * that is more robust than the current one in LAPACK, with a cleaner cut in * rank defficient cases. It will be available in the SIGMA library [4]. * If M is much larger than N, it is obvious that the inital QRF with * column pivoting can be preprocessed by the QRF without pivoting. That * well known trick is not used in DGEJSV because in some cases heavy row * weighting can be treated with complete pivoting. The overhead in cases * M much larger than N is then only due to pivoting, but the benefits in * terms of accuracy have prevailed. The implementer/user can incorporate * this extra QRF step easily. The implementer can also improve data movement * (matrix transpose, matrix copy, matrix transposed copy) - this * implementation of DGEJSV uses only the simplest, naive data movement. * * Contributors * * Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany) * * References * * [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I. * SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342. * LAPACK Working note 169. * [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II. * SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362. * LAPACK Working note 170. * [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR * factorization software - a case study. * ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28. * LAPACK Working note 176. * [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV, * QSVD, (H,K)-SVD computations. * Department of Mathematics, University of Zagreb, 2008. * * Bugs, examples and comments * * Please report all bugs and send interesting examples and/or comments to * drmac@math.hr. Thank you. * * =========================================================================== * * .. Local Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) * .. * .. Local Scalars .. DOUBLE PRECISION AAPP, AAQQ, AATMAX, AATMIN, BIG, BIG1, COND_OK, $ CONDR1, CONDR2, ENTRA, ENTRAT, EPSLN, MAXPRJ, SCALEM, $ SCONDA, SFMIN, SMALL, TEMP1, USCAL1, USCAL2, XSC INTEGER IERR, N1, NR, NUMRANK, p, q, WARNING LOGICAL ALMORT, DEFR, ERREST, GOSCAL, JRACC, KILL, LSVEC, $ L2ABER, L2KILL, L2PERT, L2RANK, L2TRAN, $ NOSCAL, ROWPIV, RSVEC, TRANSP * .. * .. Intrinsic Functions .. INTRINSIC DABS, DLOG, DMAX1, DMIN1, DBLE, $ MAX0, MIN0, IDNINT, DSIGN, DSQRT * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, DNRM2 INTEGER IDAMAX LOGICAL LSAME EXTERNAL IDAMAX, LSAME, DLAMCH, DNRM2 * .. * .. External Subroutines .. EXTERNAL DCOPY, DGELQF, DGEQP3, DGEQRF, DLACPY, DLASCL, $ DLASET, DLASSQ, DLASWP, DORGQR, DORMLQ, $ DORMQR, DPOCON, DSCAL, DSWAP, DTRSM, XERBLA * EXTERNAL DGESVJ * .. * * Test the input arguments * LSVEC = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' ) JRACC = LSAME( JOBV, 'J' ) RSVEC = LSAME( JOBV, 'V' ) .OR. JRACC ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' ) L2RANK = LSAME( JOBA, 'R' ) L2ABER = LSAME( JOBA, 'A' ) ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' ) L2TRAN = LSAME( JOBT, 'T' ) L2KILL = LSAME( JOBR, 'R' ) DEFR = LSAME( JOBR, 'N' ) L2PERT = LSAME( JOBP, 'P' ) * IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR. $ ERREST .OR. LSAME( JOBA, 'C' ) )) THEN INFO = - 1 ELSE IF ( .NOT.( LSVEC .OR. LSAME( JOBU, 'N' ) .OR. $ LSAME( JOBU, 'W' )) ) THEN INFO = - 2 ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR. $ LSAME( JOBV, 'W' )) .OR. ( JRACC .AND. (.NOT.LSVEC) ) ) THEN INFO = - 3 ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) ) THEN INFO = - 4 ELSE IF ( .NOT. ( L2TRAN .OR. LSAME( JOBT, 'N' ) ) ) THEN INFO = - 5 ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN INFO = - 6 ELSE IF ( M .LT. 0 ) THEN INFO = - 7 ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN INFO = - 8 ELSE IF ( LDA .LT. M ) THEN INFO = - 10 ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN INFO = - 13 ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN INFO = - 14 ELSE IF ( (.NOT.(LSVEC .OR. RSVEC .OR. ERREST).AND. & (LWORK .LT. MAX0(7,4*N+1,2*M+N))) .OR. & (.NOT.(LSVEC .OR. RSVEC) .AND. ERREST .AND. & (LWORK .LT. MAX0(7,4*N+N*N,2*M+N))) .OR. & (LSVEC .AND. (.NOT.RSVEC) .AND. (LWORK .LT. MAX0(7,2*M+N,4*N+1))) & .OR. & (RSVEC .AND. (.NOT.LSVEC) .AND. (LWORK .LT. MAX0(7,2*M+N,4*N+1))) & .OR. & (LSVEC .AND. RSVEC .AND. (.NOT.JRACC) .AND. & (LWORK.LT.MAX0(2*M+N,6*N+2*N*N))) & .OR. (LSVEC .AND. RSVEC .AND. JRACC .AND. & LWORK.LT.MAX0(2*M+N,4*N+N*N,2*N+N*N+6))) & THEN INFO = - 17 ELSE * #:) INFO = 0 END IF * IF ( INFO .NE. 0 ) THEN * #:( CALL XERBLA( 'DGEJSV', - INFO ) RETURN END IF * * Quick return for void matrix (Y3K safe) * #:) IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) RETURN * * Determine whether the matrix U should be M x N or M x M * IF ( LSVEC ) THEN N1 = N IF ( LSAME( JOBU, 'F' ) ) N1 = M END IF * * Set numerical parameters * *! NOTE: Make sure DLAMCH() does not fail on the target architecture. * EPSLN = DLAMCH('Epsilon') SFMIN = DLAMCH('SafeMinimum') SMALL = SFMIN / EPSLN BIG = DLAMCH('O') * BIG = ONE / SFMIN * * Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N * *(!) If necessary, scale SVA() to protect the largest norm from * overflow. It is possible that this scaling pushes the smallest * column norm left from the underflow threshold (extreme case). * SCALEM = ONE / DSQRT(DBLE(M)*DBLE(N)) NOSCAL = .TRUE. GOSCAL = .TRUE. DO 1874 p = 1, N AAPP = ZERO AAQQ = ONE CALL DLASSQ( M, A(1,p), 1, AAPP, AAQQ ) IF ( AAPP .GT. BIG ) THEN INFO = - 9 CALL XERBLA( 'DGEJSV', -INFO ) RETURN END IF AAQQ = DSQRT(AAQQ) IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL ) THEN SVA(p) = AAPP * AAQQ ELSE NOSCAL = .FALSE. SVA(p) = AAPP * ( AAQQ * SCALEM ) IF ( GOSCAL ) THEN GOSCAL = .FALSE. CALL DSCAL( p-1, SCALEM, SVA, 1 ) END IF END IF 1874 CONTINUE * IF ( NOSCAL ) SCALEM = ONE * AAPP = ZERO AAQQ = BIG DO 4781 p = 1, N AAPP = DMAX1( AAPP, SVA(p) ) IF ( SVA(p) .NE. ZERO ) AAQQ = DMIN1( AAQQ, SVA(p) ) 4781 CONTINUE * * Quick return for zero M x N matrix * #:) IF ( AAPP .EQ. ZERO ) THEN IF ( LSVEC ) CALL DLASET( 'G', M, N1, ZERO, ONE, U, LDU ) IF ( RSVEC ) CALL DLASET( 'G', N, N, ZERO, ONE, V, LDV ) WORK(1) = ONE WORK(2) = ONE IF ( ERREST ) WORK(3) = ONE IF ( LSVEC .AND. RSVEC ) THEN WORK(4) = ONE WORK(5) = ONE END IF IF ( L2TRAN ) THEN WORK(6) = ZERO WORK(7) = ZERO END IF IWORK(1) = 0 IWORK(2) = 0 IWORK(3) = 0 RETURN END IF * * Issue warning if denormalized column norms detected. Override the * high relative accuracy request. Issue licence to kill columns * (set them to zero) whose norm is less than sigma_max / BIG (roughly). * #:( WARNING = 0 IF ( AAQQ .LE. SFMIN ) THEN L2RANK = .TRUE. L2KILL = .TRUE. WARNING = 1 END IF * * Quick return for one-column matrix * #:) IF ( N .EQ. 1 ) THEN * IF ( LSVEC ) THEN CALL DLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR ) CALL DLACPY( 'A', M, 1, A, LDA, U, LDU ) * computing all M left singular vectors of the M x 1 matrix IF ( N1 .NE. N ) THEN CALL DGEQRF( M, N, U,LDU, WORK, WORK(N+1),LWORK-N,IERR ) CALL DORGQR( M,N1,1, U,LDU,WORK,WORK(N+1),LWORK-N,IERR ) CALL DCOPY( M, A(1,1), 1, U(1,1), 1 ) END IF END IF IF ( RSVEC ) THEN V(1,1) = ONE END IF IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN SVA(1) = SVA(1) / SCALEM SCALEM = ONE END IF WORK(1) = ONE / SCALEM WORK(2) = ONE IF ( SVA(1) .NE. ZERO ) THEN IWORK(1) = 1 IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN IWORK(2) = 1 ELSE IWORK(2) = 0 END IF ELSE IWORK(1) = 0 IWORK(2) = 0 END IF IF ( ERREST ) WORK(3) = ONE IF ( LSVEC .AND. RSVEC ) THEN WORK(4) = ONE WORK(5) = ONE END IF IF ( L2TRAN ) THEN WORK(6) = ZERO WORK(7) = ZERO END IF RETURN * END IF * TRANSP = .FALSE. L2TRAN = L2TRAN .AND. ( M .EQ. N ) * AATMAX = -ONE AATMIN = BIG IF ( ROWPIV .OR. L2TRAN ) THEN * * Compute the row norms, needed to determine row pivoting sequence * (in the case of heavily row weighted A, row pivoting is strongly * advised) and to collect information needed to compare the * structures of A * A^t and A^t * A (in the case L2TRAN.EQ..TRUE.). * IF ( L2TRAN ) THEN DO 1950 p = 1, M XSC = ZERO TEMP1 = ONE CALL DLASSQ( N, A(p,1), LDA, XSC, TEMP1 ) * DLASSQ gets both the ell_2 and the ell_infinity norm * in one pass through the vector WORK(M+N+p) = XSC * SCALEM WORK(N+p) = XSC * (SCALEM*DSQRT(TEMP1)) AATMAX = DMAX1( AATMAX, WORK(N+p) ) IF (WORK(N+p) .NE. ZERO) AATMIN = DMIN1(AATMIN,WORK(N+p)) 1950 CONTINUE ELSE DO 1904 p = 1, M WORK(M+N+p) = SCALEM*DABS( A(p,IDAMAX(N,A(p,1),LDA)) ) AATMAX = DMAX1( AATMAX, WORK(M+N+p) ) AATMIN = DMIN1( AATMIN, WORK(M+N+p) ) 1904 CONTINUE END IF * END IF * * For square matrix A try to determine whether A^t would be better * input for the preconditioned Jacobi SVD, with faster convergence. * The decision is based on an O(N) function of the vector of column * and row norms of A, based on the Shannon entropy. This should give * the right choice in most cases when the difference actually matters. * It may fail and pick the slower converging side. * ENTRA = ZERO ENTRAT = ZERO IF ( L2TRAN ) THEN * XSC = ZERO TEMP1 = ONE CALL DLASSQ( N, SVA, 1, XSC, TEMP1 ) TEMP1 = ONE / TEMP1 * ENTRA = ZERO DO 1113 p = 1, N BIG1 = ( ( SVA(p) / XSC )**2 ) * TEMP1 IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * DLOG(BIG1) 1113 CONTINUE ENTRA = - ENTRA / DLOG(DBLE(N)) * * Now, SVA().^2/Trace(A^t * A) is a point in the probability simplex. * It is derived from the diagonal of A^t * A. Do the same with the * diagonal of A * A^t, compute the entropy of the corresponding * probability distribution. Note that A * A^t and A^t * A have the * same trace. * ENTRAT = ZERO DO 1114 p = N+1, N+M BIG1 = ( ( WORK(p) / XSC )**2 ) * TEMP1 IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * DLOG(BIG1) 1114 CONTINUE ENTRAT = - ENTRAT / DLOG(DBLE(M)) * * Analyze the entropies and decide A or A^t. Smaller entropy * usually means better input for the algorithm. * TRANSP = ( ENTRAT .LT. ENTRA ) * * If A^t is better than A, transpose A. * IF ( TRANSP ) THEN * In an optimal implementation, this trivial transpose * should be replaced with faster transpose. DO 1115 p = 1, N - 1 DO 1116 q = p + 1, N TEMP1 = A(q,p) A(q,p) = A(p,q) A(p,q) = TEMP1 1116 CONTINUE 1115 CONTINUE DO 1117 p = 1, N WORK(M+N+p) = SVA(p) SVA(p) = WORK(N+p) 1117 CONTINUE TEMP1 = AAPP AAPP = AATMAX AATMAX = TEMP1 TEMP1 = AAQQ AAQQ = AATMIN AATMIN = TEMP1 KILL = LSVEC LSVEC = RSVEC RSVEC = KILL IF ( LSVEC ) N1 = N * ROWPIV = .TRUE. END IF * END IF * END IF L2TRAN * * Scale the matrix so that its maximal singular value remains less * than DSQRT(BIG) -- the matrix is scaled so that its maximal column * has Euclidean norm equal to DSQRT(BIG/N). The only reason to keep * DSQRT(BIG) instead of BIG is the fact that DGEJSV uses LAPACK and * BLAS routines that, in some implementations, are not capable of * working in the full interval [SFMIN,BIG] and that they may provoke * overflows in the intermediate results. If the singular values spread * from SFMIN to BIG, then DGESVJ will compute them. So, in that case, * one should use DGESVJ instead of DGEJSV. * BIG1 = DSQRT( BIG ) TEMP1 = DSQRT( BIG / DBLE(N) ) * CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR ) IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN AAQQ = ( AAQQ / AAPP ) * TEMP1 ELSE AAQQ = ( AAQQ * TEMP1 ) / AAPP END IF TEMP1 = TEMP1 * SCALEM CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR ) * * To undo scaling at the end of this procedure, multiply the * computed singular values with USCAL2 / USCAL1. * USCAL1 = TEMP1 USCAL2 = AAPP * IF ( L2KILL ) THEN * L2KILL enforces computation of nonzero singular values in * the restricted range of condition number of the initial A, * sigma_max(A) / sigma_min(A) approx. DSQRT(BIG)/DSQRT(SFMIN). XSC = DSQRT( SFMIN ) ELSE XSC = SMALL * * Now, if the condition number of A is too big, * sigma_max(A) / sigma_min(A) .GT. DSQRT(BIG/N) * EPSLN / SFMIN, * as a precaution measure, the full SVD is computed using DGESVJ * with accumulated Jacobi rotations. This provides numerically * more robust computation, at the cost of slightly increased run * time. Depending on the concrete implementation of BLAS and LAPACK * (i.e. how they behave in presence of extreme ill-conditioning) the * implementor may decide to remove this switch. IF ( ( AAQQ.LT.DSQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN JRACC = .TRUE. END IF * END IF IF ( AAQQ .LT. XSC ) THEN DO 700 p = 1, N IF ( SVA(p) .LT. XSC ) THEN CALL DLASET( 'A', M, 1, ZERO, ZERO, A(1,p), LDA ) SVA(p) = ZERO END IF 700 CONTINUE END IF * * Preconditioning using QR factorization with pivoting * IF ( ROWPIV ) THEN * Optional row permutation (Bjoerck row pivoting): * A result by Cox and Higham shows that the Bjoerck's * row pivoting combined with standard column pivoting * has similar effect as Powell-Reid complete pivoting. * The ell-infinity norms of A are made nonincreasing. DO 1952 p = 1, M - 1 q = IDAMAX( M-p+1, WORK(M+N+p), 1 ) + p - 1 IWORK(2*N+p) = q IF ( p .NE. q ) THEN TEMP1 = WORK(M+N+p) WORK(M+N+p) = WORK(M+N+q) WORK(M+N+q) = TEMP1 END IF 1952 CONTINUE CALL DLASWP( N, A, LDA, 1, M-1, IWORK(2*N+1), 1 ) END IF * * End of the preparation phase (scaling, optional sorting and * transposing, optional flushing of small columns). * * Preconditioning * * If the full SVD is needed, the right singular vectors are computed * from a matrix equation, and for that we need theoretical analysis * of the Businger-Golub pivoting. So we use DGEQP3 as the first RR QRF. * In all other cases the first RR QRF can be chosen by other criteria * (eg speed by replacing global with restricted window pivoting, such * as in SGEQPX from TOMS # 782). Good results will be obtained using * SGEQPX with properly (!) chosen numerical parameters. * Any improvement of DGEQP3 improves overal performance of DGEJSV. * * A * P1 = Q1 * [ R1^t 0]^t: DO 1963 p = 1, N * .. all columns are free columns IWORK(p) = 0 1963 CONTINUE CALL DGEQP3( M,N,A,LDA, IWORK,WORK, WORK(N+1),LWORK-N, IERR ) * * The upper triangular matrix R1 from the first QRF is inspected for * rank deficiency and possibilities for deflation, or possible * ill-conditioning. Depending on the user specified flag L2RANK, * the procedure explores possibilities to reduce the numerical * rank by inspecting the computed upper triangular factor. If * L2RANK or L2ABER are up, then DGEJSV will compute the SVD of * A + dA, where ||dA|| <= f(M,N)*EPSLN. * NR = 1 IF ( L2ABER ) THEN * Standard absolute error bound suffices. All sigma_i with * sigma_i < N*EPSLN*||A|| are flushed to zero. This is an * agressive enforcement of lower numerical rank by introducing a * backward error of the order of N*EPSLN*||A||. TEMP1 = DSQRT(DBLE(N))*EPSLN DO 3001 p = 2, N IF ( DABS(A(p,p)) .GE. (TEMP1*DABS(A(1,1))) ) THEN NR = NR + 1 ELSE GO TO 3002 END IF 3001 CONTINUE 3002 CONTINUE ELSE IF ( L2RANK ) THEN * .. similarly as above, only slightly more gentle (less agressive). * Sudden drop on the diagonal of R1 is used as the criterion for * close-to-rank-defficient. TEMP1 = DSQRT(SFMIN) DO 3401 p = 2, N IF ( ( DABS(A(p,p)) .LT. (EPSLN*DABS(A(p-1,p-1))) ) .OR. $ ( DABS(A(p,p)) .LT. SMALL ) .OR. $ ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402 NR = NR + 1 3401 CONTINUE 3402 CONTINUE * ELSE * The goal is high relative accuracy. However, if the matrix * has high scaled condition number the relative accuracy is in * general not feasible. Later on, a condition number estimator * will be deployed to estimate the scaled condition number. * Here we just remove the underflowed part of the triangular * factor. This prevents the situation in which the code is * working hard to get the accuracy not warranted by the data. TEMP1 = DSQRT(SFMIN) DO 3301 p = 2, N IF ( ( DABS(A(p,p)) .LT. SMALL ) .OR. $ ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302 NR = NR + 1 3301 CONTINUE 3302 CONTINUE * END IF * ALMORT = .FALSE. IF ( NR .EQ. N ) THEN MAXPRJ = ONE DO 3051 p = 2, N TEMP1 = DABS(A(p,p)) / SVA(IWORK(p)) MAXPRJ = DMIN1( MAXPRJ, TEMP1 ) 3051 CONTINUE IF ( MAXPRJ**2 .GE. ONE - DBLE(N)*EPSLN ) ALMORT = .TRUE. END IF * * SCONDA = - ONE CONDR1 = - ONE CONDR2 = - ONE * IF ( ERREST ) THEN IF ( N .EQ. NR ) THEN IF ( RSVEC ) THEN * .. V is available as workspace CALL DLACPY( 'U', N, N, A, LDA, V, LDV ) DO 3053 p = 1, N TEMP1 = SVA(IWORK(p)) CALL DSCAL( p, ONE/TEMP1, V(1,p), 1 ) 3053 CONTINUE CALL DPOCON( 'U', N, V, LDV, ONE, TEMP1, $ WORK(N+1), IWORK(2*N+M+1), IERR ) ELSE IF ( LSVEC ) THEN * .. U is available as workspace CALL DLACPY( 'U', N, N, A, LDA, U, LDU ) DO 3054 p = 1, N TEMP1 = SVA(IWORK(p)) CALL DSCAL( p, ONE/TEMP1, U(1,p), 1 ) 3054 CONTINUE CALL DPOCON( 'U', N, U, LDU, ONE, TEMP1, $ WORK(N+1), IWORK(2*N+M+1), IERR ) ELSE CALL DLACPY( 'U', N, N, A, LDA, WORK(N+1), N ) DO 3052 p = 1, N TEMP1 = SVA(IWORK(p)) CALL DSCAL( p, ONE/TEMP1, WORK(N+(p-1)*N+1), 1 ) 3052 CONTINUE * .. the columns of R are scaled to have unit Euclidean lengths. CALL DPOCON( 'U', N, WORK(N+1), N, ONE, TEMP1, $ WORK(N+N*N+1), IWORK(2*N+M+1), IERR ) END IF SCONDA = ONE / DSQRT(TEMP1) * SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1). * N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA ELSE SCONDA = - ONE END IF END IF * L2PERT = L2PERT .AND. ( DABS( A(1,1)/A(NR,NR) ) .GT. DSQRT(BIG1) ) * If there is no violent scaling, artificial perturbation is not needed. * * Phase 3: * IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN * * Singular Values only * * .. transpose A(1:NR,1:N) DO 1946 p = 1, MIN0( N-1, NR ) CALL DCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 ) 1946 CONTINUE * * The following two DO-loops introduce small relative perturbation * into the strict upper triangle of the lower triangular matrix. * Small entries below the main diagonal are also changed. * This modification is useful if the computing environment does not * provide/allow FLUSH TO ZERO underflow, for it prevents many * annoying denormalized numbers in case of strongly scaled matrices. * The perturbation is structured so that it does not introduce any * new perturbation of the singular values, and it does not destroy * the job done by the preconditioner. * The licence for this perturbation is in the variable L2PERT, which * should be .FALSE. if FLUSH TO ZERO underflow is active. * IF ( .NOT. ALMORT ) THEN * IF ( L2PERT ) THEN * XSC = DSQRT(SMALL) XSC = EPSLN / DBLE(N) DO 4947 q = 1, NR TEMP1 = XSC*DABS(A(q,q)) DO 4949 p = 1, N IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) ) $ .OR. ( p .LT. q ) ) $ A(p,q) = DSIGN( TEMP1, A(p,q) ) 4949 CONTINUE 4947 CONTINUE ELSE CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, A(1,2),LDA ) END IF * * .. second preconditioning using the QR factorization * CALL DGEQRF( N,NR, A,LDA, WORK, WORK(N+1),LWORK-N, IERR ) * * .. and transpose upper to lower triangular DO 1948 p = 1, NR - 1 CALL DCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 ) 1948 CONTINUE * END IF * * Row-cyclic Jacobi SVD algorithm with column pivoting * * .. again some perturbation (a "background noise") is added * to drown denormals IF ( L2PERT ) THEN * XSC = DSQRT(SMALL) XSC = EPSLN / DBLE(N) DO 1947 q = 1, NR TEMP1 = XSC*DABS(A(q,q)) DO 1949 p = 1, NR IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) ) $ .OR. ( p .LT. q ) ) $ A(p,q) = DSIGN( TEMP1, A(p,q) ) 1949 CONTINUE 1947 CONTINUE ELSE CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, A(1,2), LDA ) END IF * * .. and one-sided Jacobi rotations are started on a lower * triangular matrix (plus perturbation which is ignored in * the part which destroys triangular form (confusing?!)) * CALL DGESVJ( 'L', 'NoU', 'NoV', NR, NR, A, LDA, SVA, $ N, V, LDV, WORK, LWORK, INFO ) * SCALEM = WORK(1) NUMRANK = IDNINT(WORK(2)) * * ELSE IF ( RSVEC .AND. ( .NOT. LSVEC ) ) THEN * * -> Singular Values and Right Singular Vectors <- * IF ( ALMORT ) THEN * * .. in this case NR equals N DO 1998 p = 1, NR CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 ) 1998 CONTINUE CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV ) * CALL DGESVJ( 'L','U','N', N, NR, V,LDV, SVA, NR, A,LDA, $ WORK, LWORK, INFO ) SCALEM = WORK(1) NUMRANK = IDNINT(WORK(2)) ELSE * * .. two more QR factorizations ( one QRF is not enough, two require * accumulated product of Jacobi rotations, three are perfect ) * CALL DLASET( 'Lower', NR-1, NR-1, ZERO, ZERO, A(2,1), LDA ) CALL DGELQF( NR, N, A, LDA, WORK, WORK(N+1), LWORK-N, IERR) CALL DLACPY( 'Lower', NR, NR, A, LDA, V, LDV ) CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV ) CALL DGEQRF( NR, NR, V, LDV, WORK(N+1), WORK(2*N+1), $ LWORK-2*N, IERR ) DO 8998 p = 1, NR CALL DCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 ) 8998 CONTINUE CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV ) * CALL DGESVJ( 'Lower', 'U','N', NR, NR, V,LDV, SVA, NR, U, $ LDU, WORK(N+1), LWORK, INFO ) SCALEM = WORK(N+1) NUMRANK = IDNINT(WORK(N+2)) IF ( NR .LT. N ) THEN CALL DLASET( 'A',N-NR, NR, ZERO,ZERO, V(NR+1,1), LDV ) CALL DLASET( 'A',NR, N-NR, ZERO,ZERO, V(1,NR+1), LDV ) CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE, V(NR+1,NR+1), LDV ) END IF * CALL DORMLQ( 'Left', 'Transpose', N, N, NR, A, LDA, WORK, $ V, LDV, WORK(N+1), LWORK-N, IERR ) * END IF * DO 8991 p = 1, N CALL DCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA ) 8991 CONTINUE CALL DLACPY( 'All', N, N, A, LDA, V, LDV ) * IF ( TRANSP ) THEN CALL DLACPY( 'All', N, N, V, LDV, U, LDU ) END IF * ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN * * .. Singular Values and Left Singular Vectors .. * * .. second preconditioning step to avoid need to accumulate * Jacobi rotations in the Jacobi iterations. DO 1965 p = 1, NR CALL DCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 ) 1965 CONTINUE CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU ) * CALL DGEQRF( N, NR, U, LDU, WORK(N+1), WORK(2*N+1), $ LWORK-2*N, IERR ) * DO 1967 p = 1, NR - 1 CALL DCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 ) 1967 CONTINUE CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU ) * CALL DGESVJ( 'Lower', 'U', 'N', NR,NR, U, LDU, SVA, NR, A, $ LDA, WORK(N+1), LWORK-N, INFO ) SCALEM = WORK(N+1) NUMRANK = IDNINT(WORK(N+2)) * IF ( NR .LT. M ) THEN CALL DLASET( 'A', M-NR, NR,ZERO, ZERO, U(NR+1,1), LDU ) IF ( NR .LT. N1 ) THEN CALL DLASET( 'A',NR, N1-NR, ZERO, ZERO, U(1,NR+1), LDU ) CALL DLASET( 'A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1), LDU ) END IF END IF * CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U, $ LDU, WORK(N+1), LWORK-N, IERR ) * IF ( ROWPIV ) $ CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 ) * DO 1974 p = 1, N1 XSC = ONE / DNRM2( M, U(1,p), 1 ) CALL DSCAL( M, XSC, U(1,p), 1 ) 1974 CONTINUE * IF ( TRANSP ) THEN CALL DLACPY( 'All', N, N, U, LDU, V, LDV ) END IF * ELSE * * .. Full SVD .. * IF ( .NOT. JRACC ) THEN * IF ( .NOT. ALMORT ) THEN * * Second Preconditioning Step (QRF [with pivoting]) * Note that the composition of TRANSPOSE, QRF and TRANSPOSE is * equivalent to an LQF CALL. Since in many libraries the QRF * seems to be better optimized than the LQF, we do explicit * transpose and use the QRF. This is subject to changes in an * optimized implementation of DGEJSV. * DO 1968 p = 1, NR CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 ) 1968 CONTINUE * * .. the following two loops perturb small entries to avoid * denormals in the second QR factorization, where they are * as good as zeros. This is done to avoid painfully slow * computation with denormals. The relative size of the perturbation * is a parameter that can be changed by the implementer. * This perturbation device will be obsolete on machines with * properly implemented arithmetic. * To switch it off, set L2PERT=.FALSE. To remove it from the * code, remove the action under L2PERT=.TRUE., leave the ELSE part. * The following two loops should be blocked and fused with the * transposed copy above. * IF ( L2PERT ) THEN XSC = DSQRT(SMALL) DO 2969 q = 1, NR TEMP1 = XSC*DABS( V(q,q) ) DO 2968 p = 1, N IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 ) $ .OR. ( p .LT. q ) ) $ V(p,q) = DSIGN( TEMP1, V(p,q) ) IF ( p .LT. q ) V(p,q) = - V(p,q) 2968 CONTINUE 2969 CONTINUE ELSE CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV ) END IF * * Estimate the row scaled condition number of R1 * (If R1 is rectangular, N > NR, then the condition number * of the leading NR x NR submatrix is estimated.) * CALL DLACPY( 'L', NR, NR, V, LDV, WORK(2*N+1), NR ) DO 3950 p = 1, NR TEMP1 = DNRM2(NR-p+1,WORK(2*N+(p-1)*NR+p),1) CALL DSCAL(NR-p+1,ONE/TEMP1,WORK(2*N+(p-1)*NR+p),1) 3950 CONTINUE CALL DPOCON('Lower',NR,WORK(2*N+1),NR,ONE,TEMP1, $ WORK(2*N+NR*NR+1),IWORK(M+2*N+1),IERR) CONDR1 = ONE / DSQRT(TEMP1) * .. here need a second oppinion on the condition number * .. then assume worst case scenario * R1 is OK for inverse <=> CONDR1 .LT. DBLE(N) * more conservative <=> CONDR1 .LT. DSQRT(DBLE(N)) * COND_OK = DSQRT(DBLE(NR)) *[TP] COND_OK is a tuning parameter. IF ( CONDR1 .LT. COND_OK ) THEN * .. the second QRF without pivoting. Note: in an optimized * implementation, this QRF should be implemented as the QRF * of a lower triangular matrix. * R1^t = Q2 * R2 CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1), $ LWORK-2*N, IERR ) * IF ( L2PERT ) THEN XSC = DSQRT(SMALL)/EPSLN DO 3959 p = 2, NR DO 3958 q = 1, p - 1 TEMP1 = XSC * DMIN1(DABS(V(p,p)),DABS(V(q,q))) IF ( DABS(V(q,p)) .LE. TEMP1 ) $ V(q,p) = DSIGN( TEMP1, V(q,p) ) 3958 CONTINUE 3959 CONTINUE END IF * IF ( NR .NE. N ) $ CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N ) * .. save ... * * .. this transposed copy should be better than naive DO 1969 p = 1, NR - 1 CALL DCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 ) 1969 CONTINUE * CONDR2 = CONDR1 * ELSE * * .. ill-conditioned case: second QRF with pivoting * Note that windowed pivoting would be equaly good * numerically, and more run-time efficient. So, in * an optimal implementation, the next call to DGEQP3 * should be replaced with eg. CALL SGEQPX (ACM TOMS #782) * with properly (carefully) chosen parameters. * * R1^t * P2 = Q2 * R2 DO 3003 p = 1, NR IWORK(N+p) = 0 3003 CONTINUE CALL DGEQP3( N, NR, V, LDV, IWORK(N+1), WORK(N+1), $ WORK(2*N+1), LWORK-2*N, IERR ) ** CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1), ** $ LWORK-2*N, IERR ) IF ( L2PERT ) THEN XSC = DSQRT(SMALL) DO 3969 p = 2, NR DO 3968 q = 1, p - 1 TEMP1 = XSC * DMIN1(DABS(V(p,p)),DABS(V(q,q))) IF ( DABS(V(q,p)) .LE. TEMP1 ) $ V(q,p) = DSIGN( TEMP1, V(q,p) ) 3968 CONTINUE 3969 CONTINUE END IF * CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N ) * IF ( L2PERT ) THEN XSC = DSQRT(SMALL) DO 8970 p = 2, NR DO 8971 q = 1, p - 1 TEMP1 = XSC * DMIN1(DABS(V(p,p)),DABS(V(q,q))) V(p,q) = - DSIGN( TEMP1, V(q,p) ) 8971 CONTINUE 8970 CONTINUE ELSE CALL DLASET( 'L',NR-1,NR-1,ZERO,ZERO,V(2,1),LDV ) END IF * Now, compute R2 = L3 * Q3, the LQ factorization. CALL DGELQF( NR, NR, V, LDV, WORK(2*N+N*NR+1), $ WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR ) * .. and estimate the condition number CALL DLACPY( 'L',NR,NR,V,LDV,WORK(2*N+N*NR+NR+1),NR ) DO 4950 p = 1, NR TEMP1 = DNRM2( p, WORK(2*N+N*NR+NR+p), NR ) CALL DSCAL( p, ONE/TEMP1, WORK(2*N+N*NR+NR+p), NR ) 4950 CONTINUE CALL DPOCON( 'L',NR,WORK(2*N+N*NR+NR+1),NR,ONE,TEMP1, $ WORK(2*N+N*NR+NR+NR*NR+1),IWORK(M+2*N+1),IERR ) CONDR2 = ONE / DSQRT(TEMP1) * IF ( CONDR2 .GE. COND_OK ) THEN * .. save the Householder vectors used for Q3 * (this overwrittes the copy of R2, as it will not be * needed in this branch, but it does not overwritte the * Huseholder vectors of Q2.). CALL DLACPY( 'U', NR, NR, V, LDV, WORK(2*N+1), N ) * .. and the rest of the information on Q3 is in * WORK(2*N+N*NR+1:2*N+N*NR+N) END IF * END IF * IF ( L2PERT ) THEN XSC = DSQRT(SMALL) DO 4968 q = 2, NR TEMP1 = XSC * V(q,q) DO 4969 p = 1, q - 1 * V(p,q) = - DSIGN( TEMP1, V(q,p) ) V(p,q) = - DSIGN( TEMP1, V(p,q) ) 4969 CONTINUE 4968 CONTINUE ELSE CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, V(1,2), LDV ) END IF * * Second preconditioning finished; continue with Jacobi SVD * The input matrix is lower trinagular. * * Recover the right singular vectors as solution of a well * conditioned triangular matrix equation. * IF ( CONDR1 .LT. COND_OK ) THEN * CALL DGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U, $ LDU,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,INFO ) SCALEM = WORK(2*N+N*NR+NR+1) NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2)) DO 3970 p = 1, NR CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 ) CALL DSCAL( NR, SVA(p), V(1,p), 1 ) 3970 CONTINUE * .. pick the right matrix equation and solve it * IF ( NR .EQ. N ) THEN * :)) .. best case, R1 is inverted. The solution of this matrix * equation is Q2*V2 = the product of the Jacobi rotations * used in DGESVJ, premultiplied with the orthogonal matrix * from the second QR factorization. CALL DTRSM( 'L','U','N','N', NR,NR,ONE, A,LDA, V,LDV ) ELSE * .. R1 is well conditioned, but non-square. Transpose(R2) * is inverted to get the product of the Jacobi rotations * used in DGESVJ. The Q-factor from the second QR * factorization is then built in explicitly. CALL DTRSM('L','U','T','N',NR,NR,ONE,WORK(2*N+1), $ N,V,LDV) IF ( NR .LT. N ) THEN CALL DLASET('A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV) CALL DLASET('A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV) CALL DLASET('A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV) END IF CALL DORMQR('L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1), $ V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR) END IF * ELSE IF ( CONDR2 .LT. COND_OK ) THEN * * :) .. the input matrix A is very likely a relative of * the Kahan matrix :) * The matrix R2 is inverted. The solution of the matrix equation * is Q3^T*V3 = the product of the Jacobi rotations (appplied to * the lower triangular L3 from the LQ factorization of * R2=L3*Q3), pre-multiplied with the transposed Q3. CALL DGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U, $ LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO ) SCALEM = WORK(2*N+N*NR+NR+1) NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2)) DO 3870 p = 1, NR CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 ) CALL DSCAL( NR, SVA(p), U(1,p), 1 ) 3870 CONTINUE CALL DTRSM('L','U','N','N',NR,NR,ONE,WORK(2*N+1),N,U,LDU) * .. apply the permutation from the second QR factorization DO 873 q = 1, NR DO 872 p = 1, NR WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q) 872 CONTINUE DO 874 p = 1, NR U(p,q) = WORK(2*N+N*NR+NR+p) 874 CONTINUE 873 CONTINUE IF ( NR .LT. N ) THEN CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV ) CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV ) CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV ) END IF CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1), $ V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR ) ELSE * Last line of defense. * #:( This is a rather pathological case: no scaled condition * improvement after two pivoted QR factorizations. Other * possibility is that the rank revealing QR factorization * or the condition estimator has failed, or the COND_OK * is set very close to ONE (which is unnecessary). Normally, * this branch should never be executed, but in rare cases of * failure of the RRQR or condition estimator, the last line of * defense ensures that DGEJSV completes the task. * Compute the full SVD of L3 using DGESVJ with explicit * accumulation of Jacobi rotations. CALL DGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U, $ LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO ) SCALEM = WORK(2*N+N*NR+NR+1) NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2)) IF ( NR .LT. N ) THEN CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV ) CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV ) CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV ) END IF CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1), $ V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR ) * CALL DORMLQ( 'L', 'T', NR, NR, NR, WORK(2*N+1), N, $ WORK(2*N+N*NR+1), U, LDU, WORK(2*N+N*NR+NR+1), $ LWORK-2*N-N*NR-NR, IERR ) DO 773 q = 1, NR DO 772 p = 1, NR WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q) 772 CONTINUE DO 774 p = 1, NR U(p,q) = WORK(2*N+N*NR+NR+p) 774 CONTINUE 773 CONTINUE * END IF * * Permute the rows of V using the (column) permutation from the * first QRF. Also, scale the columns to make them unit in * Euclidean norm. This applies to all cases. * TEMP1 = DSQRT(DBLE(N)) * EPSLN DO 1972 q = 1, N DO 972 p = 1, N WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q) 972 CONTINUE DO 973 p = 1, N V(p,q) = WORK(2*N+N*NR+NR+p) 973 CONTINUE XSC = ONE / DNRM2( N, V(1,q), 1 ) IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) ) $ CALL DSCAL( N, XSC, V(1,q), 1 ) 1972 CONTINUE * At this moment, V contains the right singular vectors of A. * Next, assemble the left singular vector matrix U (M x N). IF ( NR .LT. M ) THEN CALL DLASET( 'A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU ) IF ( NR .LT. N1 ) THEN CALL DLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU) CALL DLASET('A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1),LDU) END IF END IF * * The Q matrix from the first QRF is built into the left singular * matrix U. This applies to all cases. * CALL DORMQR( 'Left', 'No_Tr', M, N1, N, A, LDA, WORK, U, $ LDU, WORK(N+1), LWORK-N, IERR ) * The columns of U are normalized. The cost is O(M*N) flops. TEMP1 = DSQRT(DBLE(M)) * EPSLN DO 1973 p = 1, NR XSC = ONE / DNRM2( M, U(1,p), 1 ) IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) ) $ CALL DSCAL( M, XSC, U(1,p), 1 ) 1973 CONTINUE * * If the initial QRF is computed with row pivoting, the left * singular vectors must be adjusted. * IF ( ROWPIV ) $ CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 ) * ELSE * * .. the initial matrix A has almost orthogonal columns and * the second QRF is not needed * CALL DLACPY( 'Upper', N, N, A, LDA, WORK(N+1), N ) IF ( L2PERT ) THEN XSC = DSQRT(SMALL) DO 5970 p = 2, N TEMP1 = XSC * WORK( N + (p-1)*N + p ) DO 5971 q = 1, p - 1 WORK(N+(q-1)*N+p)=-DSIGN(TEMP1,WORK(N+(p-1)*N+q)) 5971 CONTINUE 5970 CONTINUE ELSE CALL DLASET( 'Lower',N-1,N-1,ZERO,ZERO,WORK(N+2),N ) END IF * CALL DGESVJ( 'Upper', 'U', 'N', N, N, WORK(N+1), N, SVA, $ N, U, LDU, WORK(N+N*N+1), LWORK-N-N*N, INFO ) * SCALEM = WORK(N+N*N+1) NUMRANK = IDNINT(WORK(N+N*N+2)) DO 6970 p = 1, N CALL DCOPY( N, WORK(N+(p-1)*N+1), 1, U(1,p), 1 ) CALL DSCAL( N, SVA(p), WORK(N+(p-1)*N+1), 1 ) 6970 CONTINUE * CALL DTRSM( 'Left', 'Upper', 'NoTrans', 'No UD', N, N, $ ONE, A, LDA, WORK(N+1), N ) DO 6972 p = 1, N CALL DCOPY( N, WORK(N+p), N, V(IWORK(p),1), LDV ) 6972 CONTINUE TEMP1 = DSQRT(DBLE(N))*EPSLN DO 6971 p = 1, N XSC = ONE / DNRM2( N, V(1,p), 1 ) IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) ) $ CALL DSCAL( N, XSC, V(1,p), 1 ) 6971 CONTINUE * * Assemble the left singular vector matrix U (M x N). * IF ( N .LT. M ) THEN CALL DLASET( 'A', M-N, N, ZERO, ZERO, U(N+1,1), LDU ) IF ( N .LT. N1 ) THEN CALL DLASET( 'A',N, N1-N, ZERO, ZERO, U(1,N+1),LDU ) CALL DLASET( 'A',M-N,N1-N, ZERO, ONE,U(N+1,N+1),LDU ) END IF END IF CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U, $ LDU, WORK(N+1), LWORK-N, IERR ) TEMP1 = DSQRT(DBLE(M))*EPSLN DO 6973 p = 1, N1 XSC = ONE / DNRM2( M, U(1,p), 1 ) IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) ) $ CALL DSCAL( M, XSC, U(1,p), 1 ) 6973 CONTINUE * IF ( ROWPIV ) $ CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 ) * END IF * * end of the >> almost orthogonal case << in the full SVD * ELSE * * This branch deploys a preconditioned Jacobi SVD with explicitly * accumulated rotations. It is included as optional, mainly for * experimental purposes. It does perfom well, and can also be used. * In this implementation, this branch will be automatically activated * if the condition number sigma_max(A) / sigma_min(A) is predicted * to be greater than the overflow threshold. This is because the * a posteriori computation of the singular vectors assumes robust * implementation of BLAS and some LAPACK procedures, capable of working * in presence of extreme values. Since that is not always the case, ... * DO 7968 p = 1, NR CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 ) 7968 CONTINUE * IF ( L2PERT ) THEN XSC = DSQRT(SMALL/EPSLN) DO 5969 q = 1, NR TEMP1 = XSC*DABS( V(q,q) ) DO 5968 p = 1, N IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 ) $ .OR. ( p .LT. q ) ) $ V(p,q) = DSIGN( TEMP1, V(p,q) ) IF ( p .LT. q ) V(p,q) = - V(p,q) 5968 CONTINUE 5969 CONTINUE ELSE CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV ) END IF CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1), $ LWORK-2*N, IERR ) CALL DLACPY( 'L', N, NR, V, LDV, WORK(2*N+1), N ) * DO 7969 p = 1, NR CALL DCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 ) 7969 CONTINUE IF ( L2PERT ) THEN XSC = DSQRT(SMALL/EPSLN) DO 9970 q = 2, NR DO 9971 p = 1, q - 1 TEMP1 = XSC * DMIN1(DABS(U(p,p)),DABS(U(q,q))) U(p,q) = - DSIGN( TEMP1, U(q,p) ) 9971 CONTINUE 9970 CONTINUE ELSE CALL DLASET('U', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU ) END IF CALL DGESVJ( 'G', 'U', 'V', NR, NR, U, LDU, SVA, $ N, V, LDV, WORK(2*N+N*NR+1), LWORK-2*N-N*NR, INFO ) SCALEM = WORK(2*N+N*NR+1) NUMRANK = IDNINT(WORK(2*N+N*NR+2)) IF ( NR .LT. N ) THEN CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV ) CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV ) CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV ) END IF CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1), $ V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR ) * * Permute the rows of V using the (column) permutation from the * first QRF. Also, scale the columns to make them unit in * Euclidean norm. This applies to all cases. * TEMP1 = DSQRT(DBLE(N)) * EPSLN DO 7972 q = 1, N DO 8972 p = 1, N WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q) 8972 CONTINUE DO 8973 p = 1, N V(p,q) = WORK(2*N+N*NR+NR+p) 8973 CONTINUE XSC = ONE / DNRM2( N, V(1,q), 1 ) IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) ) $ CALL DSCAL( N, XSC, V(1,q), 1 ) 7972 CONTINUE * * At this moment, V contains the right singular vectors of A. * Next, assemble the left singular vector matrix U (M x N). * IF ( NR .LT. M ) THEN CALL DLASET( 'A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU ) IF ( NR .LT. N1 ) THEN CALL DLASET( 'A',NR, N1-NR, ZERO, ZERO, U(1,NR+1),LDU ) CALL DLASET( 'A',M-NR,N1-NR, ZERO, ONE,U(NR+1,NR+1),LDU ) END IF END IF * CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U, $ LDU, WORK(N+1), LWORK-N, IERR ) * IF ( ROWPIV ) $ CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 ) * * END IF IF ( TRANSP ) THEN * .. swap U and V because the procedure worked on A^t DO 6974 p = 1, N CALL DSWAP( N, U(1,p), 1, V(1,p), 1 ) 6974 CONTINUE END IF * END IF * end of the full SVD * * Undo scaling, if necessary (and possible) * IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN CALL DLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR ) USCAL1 = ONE USCAL2 = ONE END IF * IF ( NR .LT. N ) THEN DO 3004 p = NR+1, N SVA(p) = ZERO 3004 CONTINUE END IF * WORK(1) = USCAL2 * SCALEM WORK(2) = USCAL1 IF ( ERREST ) WORK(3) = SCONDA IF ( LSVEC .AND. RSVEC ) THEN WORK(4) = CONDR1 WORK(5) = CONDR2 END IF IF ( L2TRAN ) THEN WORK(6) = ENTRA WORK(7) = ENTRAT END IF * IWORK(1) = NR IWORK(2) = NUMRANK IWORK(3) = WARNING * RETURN * .. * .. END OF DGEJSV * .. END * |