DGETF2

   November 2006

Purpose

DGETF2 computes an LU factorization of a general m-by-n matrix A
using partial pivoting with row interchanges.

The factorization has the form
   A = P * L * U
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).

This is the right-looking Level 2 BLAS version of the algorithm.

Arguments

M
(input) INTEGER
The number of rows of the matrix A.  M >= 0.
N
(input) INTEGER
The number of columns of the matrix A.  N >= 0.
A
(input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n matrix to be factored.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA
(input) INTEGER
The leading dimension of the array A.  LDA >= max(1,M).
IPIV
(output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO
(output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, U(k,k) is exactly zero. The factorization
     has been completed, but the factor U is exactly
     singular, and division by zero will occur if it is used
     to solve a system of equations.

Call Graph

Caller Graph