DGETRF

   November 2006

Purpose

DGETRF computes an LU factorization of a general M-by-N matrix A
using partial pivoting with row interchanges.

The factorization has the form
   A = P * L * U
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

Arguments

M
(input) INTEGER
The number of rows of the matrix A.  M >= 0.
N
(input) INTEGER
The number of columns of the matrix A.  N >= 0.
A
(input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix to be factored.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA
(input) INTEGER
The leading dimension of the array A.  LDA >= max(1,M).
IPIV
(output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
INFO
(output) INTEGER
= 0:  successful exit
< 0:  if INFO = -i, the i-th argument had an illegal value
> 0:  if INFO = i, U(i,i) is exactly zero. The factorization
      has been completed, but the factor U is exactly
      singular, and division by zero will occur if it is used
      to solve a system of equations.

Call Graph

Caller Graph